Your browser doesn't support javascript.
loading
Tipping the Balance: Vitamin D Inadequacy in Children Impacts the Major Gut Bacterial Phyla.
Singh, Parul; Rawat, Arun; Saadaoui, Marwa; Elhag, Duaa; Tomei, Sara; Elanbari, Mohammed; Akobeng, Anthony K; Mustafa, Amira; Abdelgadir, Ibtihal; Udassi, Sharda; Hendaus, Mohammed A; Al Khodor, Souhaila.
Afiliação
  • Singh P; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Rawat A; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 5825, Qatar.
  • Saadaoui M; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Elhag D; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Tomei S; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Elanbari M; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Akobeng AK; Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Mustafa A; Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Abdelgadir I; Pediatric Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Udassi S; Emergency Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Hendaus MA; Pediatric Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Al Khodor S; Pediatric Department, Sidra Medicine, Doha P.O. Box 26999, Qatar.
Biomedicines ; 10(2)2022 Jan 26.
Article em En | MEDLINE | ID: mdl-35203487
ABSTRACT
Vitamin D inadequacy appears to be on the rise globally, and it has been linked to an increased risk of osteoporosis, as well as metabolic, cardiovascular, and autoimmune diseases. Vitamin D concentrations are partially determined by genetic factors. Specific single nucleotide polymorphisms (SNPs) in genes involved in vitamin D transport, metabolism, or binding have been found to be associated with its serum concentration, and these SNPs differ among ethnicities. Vitamin D has also been suggested to be a regulator of the gut microbiota and vitamin D deficiency as the possible cause of gut microbial dysbiosis and inflammation. This pilot study aims to fill the gap in our understanding of the prevalence, cause, and implications of vitamin D inadequacy in a pediatric population residing in Qatar. Blood and fecal samples were collected from healthy subjects aged 4-14 years. Blood was used to measure serum metabolite of vitamin D, 25-hydroxycholecalciferol 25(OH)D. To evaluate the composition of the gut microbiota, fecal samples were subjected to 16S rRNA gene sequencing. High levels of vitamin D deficiency/insufficiency were observed in our cohort with 97% of the subjects falling into the inadequate category (with serum 25(OH)D < 75 nmol/L). The CT genotype in rs12512631, an SNP in the GC gene, was associated with low serum levels of vitamin D (ANOVA, p = 0.0356) and was abundant in deficient compared to non-deficient subjects. Overall gut microbial community structure was significantly different between the deficient (D) and non-deficient (ND) groups (Bray Curtis dissimilarity p = 0.049), with deficient subjects also displaying reduced gut microbial diversity. Significant differences were observed among the two major gut phyla, Firmicutes (F) and Bacteroidetes (B), where deficient subjects displayed a higher B/F ratio (p = 0.0097) compared to ND. Vitamin D deficient children also demonstrated gut enterotypes dominated by the genus Prevotella as opposed to Bacteroides. Our findings suggest that pediatric vitamin D inadequacy significantly impacts the gut microbiota. We also highlight the importance of considering host genetics and baseline gut microbiome composition in interpreting the clinical outcomes related to vitamin D deficiency as well as designing better personalized strategies for therapeutic interventions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Qatar

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Qatar