Your browser doesn't support javascript.
loading
Katanin-Dependent Microtubule Ordering in Association with ABA Is Important for Root Hydrotropism.
Miao, Rui; Siao, Wei; Zhang, Na; Lei, Zuliang; Lin, Deshu; Bhalerao, Rishikesh P; Lu, Congming; Xu, Weifeng.
Afiliação
  • Miao R; Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
  • Siao W; Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
  • Zhang N; Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
  • Lei Z; Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
  • Lin D; Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
  • Bhalerao RP; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
  • Lu C; Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umea, Sweden.
  • Xu W; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article em En | MEDLINE | ID: mdl-35409205
Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China