Your browser doesn't support javascript.
loading
Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice.
Song, Yudong; Bugada, Luke; Li, Ruiting; Hu, Hongxiang; Zhang, Luchen; Li, Chengyi; Yuan, Hebao; Rajanayake, Krishani Kumari; Truchan, Nathan A; Wen, Fei; Gao, Wei; Sun, Duxin.
Afiliação
  • Song Y; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Bugada L; Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Li R; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Hu H; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Zhang L; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Li C; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Yuan H; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Rajanayake KK; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Truchan NA; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Wen F; Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Gao W; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
  • Sun D; Department of Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
Sci Transl Med ; 14(643): eabl3649, 2022 05 04.
Article em En | MEDLINE | ID: mdl-35507675
ABSTRACT
Immunomodulators that remodel the tumor immunosuppressive microenvironment have been combined with anti-programmed death 1 (α-PD1) or anti-programmed death ligand 1 (α-PDL1) immunotherapy but have shown limited success in clinical trials. However, therapeutic strategies to modulate the immunosuppressive microenvironment of lymph nodes have been largely overlooked. Here, we designed an albumin nanoparticle, Nano-PI, containing the immunomodulators PI3Kγ inhibitor (IPI-549) and paclitaxel (PTX). We treated two breast cancer mouse models with Nano-PI in combination with α-PD1, which remodeled the tumor microenvironment in both lymph nodes and tumors. This combination achieved long-term tumor remission in mouse models and eliminated lung metastases. PTX combined with IPI-549 enabled the formation of a stable nanoparticle and enhanced the repolarization of M2 to M1 macrophages. Nano-PI not only enhanced the delivery of both immunomodulators to lymph nodes and tumors but also improved the drug accumulation in the macrophages of these two tissues. Immune cell profiling revealed that the combination of Nano-PI with α-PD1 remodeled the immune microenvironment by polarizing M2 to M1 macrophages, increasing CD4+ and CD8+ T cells, B cells, and dendritic cells, decreasing regulatory T cells, and preventing T cell exhaustion. Our data suggest that Nano-PI in combination with α-PD1 modulates the immune microenvironment in both lymph nodes and tumors to achieve long-term remission in mice with metastatic breast cancer, and represents a promising candidate for future clinical trials.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Nanopartículas Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Nanopartículas Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos