Your browser doesn't support javascript.
loading
Habitat-dependent prokaryotic microbial community, potential keystone species, and network complexity in a subtropical estuary.
Duan, Li; Li, Jia-Ling; Yin, Ling-Zi; Luo, Xiao-Qing; Ahmad, Manzoor; Fang, Bao-Zhu; Li, Shan-Hui; Deng, Qi-Qi; Wang, Pandeng; Li, Wen-Jun.
Afiliação
  • Duan L; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Li JL; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Yin LZ; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Luo XQ; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Ahmad M; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Fang BZ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
  • Li SH; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Deng QQ; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
  • Wang P; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Hubei Key Laboratory of Marine Geological Resources, China U
  • Li WJ; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang I
Environ Res ; 212(Pt D): 113376, 2022 09.
Article em En | MEDLINE | ID: mdl-35561827
ABSTRACT
Microbes (e.g., bacteria and archaea) are indispensable components for the key biological processes of estuarine ecosystems and three main habitats (sediment, particle, and water) are harboring diverse estuarine microbes. However, we still know little about how the microbial community structures, potential keystone species, and network properties change among these three habitats in estuarine ecosystems. In this study, we collected size-fractioned water and sediment samples from the Pearl River Estuary to reveal their microbial diversity, community structures, network properties, and potential keystone taxa. We found that the sediment microbial community was remarkably more diverse than particle-attached (PA) and free-living (FL) communities, whereas its ecological network was less complex in terms of node distance and connectivity. TOC was determined as the main driver of sediment community, while the PA and FL communities were predominantly shaped by NO2-, non-ionic ammonia (NH) and pH. Among the bulk water, there were no significant differences between PA and FL communities in diversity, community structure, and network complexity. However, the PA community was more susceptible to metal elements, suggesting their higher level of involvement in physiological metabolism. Potential keystone taxa among community networks were taxonomically divergent in three habitats. Specifically, Synechococcales (Cyanobacteria) and Actinomarinales (Actinobacteria) exclusively served as the module-hubs in FL network, while members from phylum Proteobacteria and Bacteroidetes were the module-hubs and connectors in PA network. Potential keystone taxa in sediment network were more diverse and covered 9 phyla, including the only archaeal lineage Bathyarchaeia (Crenarchaeota). Overall, our study provided more detailed information about estuarine microbial communities in three habitats, especially the potential keystone species, which provided new perspectives on evaluating further effects of anthropogenic disturbances on estuarine microbes and facilitated the environment monitoring based on microbial community.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cianobactérias / Microbiota Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cianobactérias / Microbiota Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China