Your browser doesn't support javascript.
loading
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin.
Kshirsagar, Meghana; Yuan, Han; Ferres, Juan Lavista; Leslie, Christina.
Afiliação
  • Kshirsagar M; Microsoft, AI for Good Research Lab, Redmond, WA, USA. meghana.kshirsagar@microsoft.com.
  • Yuan H; Calico Life Sciences, South San Francisco, CA, USA.
  • Ferres JL; Microsoft, AI for Good Research Lab, Redmond, WA, USA.
  • Leslie C; Memorial Sloan Kettering Cancer Center, New York, NY, USA. cleslie@cbio.mskcc.org.
Genome Biol ; 23(1): 174, 2022 08 15.
Article em En | MEDLINE | ID: mdl-35971180
We present a novel unsupervised deep learning approach called BindVAE, based on Dirichlet variational autoencoders, for jointly decoding multiple TF binding signals from open chromatin regions. BindVAE can disentangle an input DNA sequence into distinct latent factors that encode cell-type specific in vivo binding signals for individual TFs, composite patterns for TFs involved in cooperative binding, and genomic context surrounding the binding sites. On the task of retrieving the motifs of expressed TFs in a given cell type, BindVAE is competitive with existing motif discovery approaches.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Cromatina Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Cromatina Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos