Your browser doesn't support javascript.
loading
Atomistic deformation mechanism of silicon under laser-driven shock compression.
Pandolfi, Silvia; Brown, S Brennan; Stubley, P G; Higginbotham, Andrew; Bolme, C A; Lee, H J; Nagler, B; Galtier, E; Sandberg, R L; Yang, W; Mao, W L; Wark, J S; Gleason, A E.
Afiliação
  • Pandolfi S; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA. silviap@stanford.edu.
  • Brown SB; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
  • Stubley PG; Department of Physics, Clarendon Laboratory, Univeristy of Oxford, Parks Road, Oxford, OX1 3PU, UK.
  • Higginbotham A; Department of Physics, University of York, Heslington York, YO10 5DD, UK.
  • Bolme CA; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Lee HJ; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
  • Nagler B; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
  • Galtier E; SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
  • Sandberg RL; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Yang W; Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA.
  • Mao WL; Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
  • Wark JS; Geological Sciences, Stanford University, 367 Panama St., Stanford, CA, 94305, USA.
  • Gleason AE; Department of Physics, Clarendon Laboratory, Univeristy of Oxford, Parks Road, Oxford, OX1 3PU, UK.
Nat Commun ; 13(1): 5535, 2022 Sep 21.
Article em En | MEDLINE | ID: mdl-36130983
ABSTRACT
Silicon (Si) is one of the most abundant elements on Earth, and it is the most widely used semiconductor. Despite extensive study, some properties of Si, such as its behaviour under dynamic compression, remain elusive. A detailed understanding of Si deformation is crucial for various fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, direct evidence supporting either deformation mechanism remains elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted shear release via phase transition. Our results resolve the longstanding controversy on silicon deformation and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos