Your browser doesn't support javascript.
loading
SUE4, a novel PIN1-interacting membrane protein, regulates acropetal auxin transport in response to sulfur deficiency.
Zhao, Qing; Zhao, Ping-Xia; Wu, Yu; Zhong, Chang-Quan; Liao, Hong; Li, Chuan-You; Fu, Xiang-Dong; Fang, Ping; Xu, Ping; Xiang, Cheng-Bin.
Afiliação
  • Zhao Q; Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Zhao PX; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Wu Y; Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Zhong CQ; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Liao H; Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Li CY; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Fu XD; Division of Life Sciences and Medicine, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Fang P; Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China.
  • Xu P; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China.
  • Xiang CB; State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
New Phytol ; 237(1): 78-87, 2023 01.
Article em En | MEDLINE | ID: mdl-36226797
Sulfur (S) is an essential macronutrient for plants and a signaling molecule in abiotic stress responses. It is known that S availability modulates root system architecture; however, the underlying molecular mechanisms are largely unknown. We previously reported an Arabidopsis gain-of-function mutant sulfate utilization efficiency4 (sue4) that could tolerate S deficiency during germination and early seedling growth with faster primary root elongation. Here, we report that SUE4, a novel plasma membrane-localized protein, interacts with the polar auxin transporter PIN1, resulting in reduced PIN1 protein levels and thus decreasing auxin transport to the root tips, which promotes primary root elongation. Moreover, SUE4 is induced by sulfate deficiency, consistent with its role in root elongation. Further analyses showed that the SUE4-PIN1 interaction decreased PIN1 levels, possibly through 26 S proteasome-mediated degradation. Taken together, our finding of SUE4-mediated root elongation is consistent with root adaptation to highly mobile sulfate in soil, thus revealing a novel component in the adaptive response of roots to S deficiency.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Proteínas de Arabidopsis Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China