Preclinical characterization of ABI-H2158, an HBV core inhibitor with dual mechanisms of action.
Antiviral Res
; 209: 105485, 2023 01.
Article
em En
| MEDLINE
| ID: mdl-36509208
The HBV core protein plays an integral role in multiple steps of the HBV lifecycle. Consequently, HBV core inhibitors interrupt multiple steps of the replication cycle, including blocking pgRNA encapsidation and prematurely disassembling existing nucleocapsids, thereby preventing them from transporting relaxed circular (rcDNA) to the nucleus for conversion to covalently closed circular DNA (cccDNA). ABI-H2158 is an HBV core inhibitor that advanced into Phase 2 clinical trials for the treatment of chronic hepatitis B virus infection (cHBV) but was discontinued due to hepatotoxicity. Here, the potency, selectivity, and mechanisms of action of ABI-H2158 were evaluated using a variety of cell-based assays. Antiviral activity was measured by quantifying intracellular or secreted HBV DNA, RNA, and antigens. ABI-H2158 inhibited HBV replication by blocking pgRNA encapsidation in induced HepAD38 cells (EC50 = 22 nM) and had similar potency in HBV-infected HepG2-NTCP cells (EC50 = 27 nM) and primary human hepatocytes (PHH) (EC50 = 41 nM). ABI-H2158 is a pan-genotypic HBV inhibitor, with EC50s ranging from 7.1 to 22 nM across HBV genotypes A-E. ABI-H2158 also potently blocked the formation of cccDNA in de novo HBV infections with EC50s of â¼200 nM in HepG2-NTCP and PHH assays. These results indicate ABI-H2158 has dual mechanisms of action, inhibiting both early and late steps of the HBV replication cycle.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Vírus da Hepatite B
/
Hepatite B Crônica
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article