Impaired ribosome-associated quality control of C9orf72 arginine-rich dipeptide-repeat proteins.
Brain
; 146(7): 2897-2912, 2023 07 03.
Article
em En
| MEDLINE
| ID: mdl-36516294
Protein quality control pathways have evolved to ensure the fidelity of protein synthesis and efficiently clear potentially toxic protein species. Defects in ribosome-associated quality control and its associated factors have been implicated in the accumulation of aberrant proteins and neurodegeneration. C9orf72 repeat-associated non-AUG translation has been suggested to involve inefficient translation elongation, lead to ribosomal pausing and activation of ribosome-associated quality control pathways. However, the role of the ribosome-associated quality control complex in the processing of proteins generated through this non-canonical translation is not well understood. Here we use reporter constructs containing the C9orf72-associated hexanucleotide repeat, ribosome-associated quality control complex deficient cell models and stain for ribosome-associated quality control markers in C9orf72-expansion carrier human tissue to understand its role in dipeptide-repeat protein pathology. Our studies show that canonical ribosome-associated quality control substrates products are efficiently cleared by the ribosome-associated quality control complex in mammalian cells. Furthermore, using stalling reporter constructs, we show that repeats associated with the C9orf72-expansion induce ribosomal stalling when arginine (R)-rich dipeptide-repeat proteins are synthesized in a length-dependent manner. However, despite triggering this pathway, these arginine-rich dipeptide-repeat proteins are not efficiently processed by the core components of the ribosome-associated quality control complex (listerin, nuclear-export mediator factor and valosin containing protein) partly due to lack of lysine residues, which precludes ubiquitination. Deficient processing by this complex may be implicated in C9orf72-expansion associated disease as dipeptide-repeat protein inclusions were observed to be predominantly devoid of ubiquitin and co-localize with nuclear-export mediator factor in mutation carriers' frontal cortex and cerebellum tissue. These findings suggest that impaired processing of these arginine-rich dipeptide-repeat proteins derived from repeat-associated non-AUG translation by the ribosome-associated quality control complex may contribute to protein homeostasis dysregulation observed in C9orf72-expansion amyotrophic lateral sclerosis and frontotemporal degeneration neuropathogenesis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Doenças Neurodegenerativas
/
Demência Frontotemporal
/
Esclerose Lateral Amiotrófica
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos