Exploration of Ligand-Centered Hydride Transfer in La/Y-Catalyzed Deoxygenative Reduction of Tertiary Amides with Pinacolborane.
Inorg Chem
; 62(4): 1580-1590, 2023 Jan 30.
Article
em En
| MEDLINE
| ID: mdl-36649499
A number of rare-earth metals and actinides have proven to be active in a wide variety of atom-efficient transformations. As compared to the related organometallic catalysts, the detailed mechanisms for the rare-earth metal-catalyzed reactions remain largely unexplored. Herein, the detailed catalyst activation process and reaction mechanisms of deoxygenative reduction of amides with pinacolborane (HBpin) catalyzed by Y[N(TMS)2]3 and La[N(TMS)2]3 complexes as well as a La4(O)acac10 cluster are investigated by density functional theory calculations. The M(III)-hemiaminal complex is disclosed to be the active catalyst for both the complexes and the cluster. During catalyst activation for both the Y and La complexes, the H-B bond polarity results in the formation of a transient M(III)-hydride intermediate, which is converted into an on-cycle M(III)-hemiaminal complex via facile migratory insertion. However, this kind of La(III)-hydride species cannot be formed for the La cluster. Starting from the M(III)-hemiaminal complex, the reaction proceeds via the ligand-centered hydride transfer mechanism that involves B-O bond formation, hydride transfer to B, C-O cleavage within the hemiaminal borane, hydride transfer to C, and σ-bond metathesis. The additional HBpin molecule is vital for the first hydride transfer that leads to the formation of [H2Bpin]- species. Our calculations reveal several important cooperative effects of the HBpin component during the hydride transfer processes. The improved mechanistic insights will be helpful for further development of selective CâO reduction.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article