RNAincoder: a deep learning-based encoder for RNA and RNA-associated interaction.
Nucleic Acids Res
; 51(W1): W509-W519, 2023 07 05.
Article
em En
| MEDLINE
| ID: mdl-37166951
Ribonucleic acids (RNAs) involve in various physiological/pathological processes by interacting with proteins, compounds, and other RNAs. A variety of powerful computational methods have been developed to predict such valuable interactions. However, all these methods rely heavily on the 'digitalization' (also known as 'encoding') of RNA-associated interacting pairs into a computer-recognizable descriptor. In other words, it is urgently needed to have a powerful tool that can not only represent each interacting partner but also integrate both partners into a computer-recognizable interaction. Herein, RNAincoder (deep learning-based encoder for RNA-associated interactions) was therefore proposed to (a) provide a comprehensive collection of RNA encoding features, (b) realize the representation of any RNA-associated interaction based on a well-established deep learning-based embedding strategy and (c) enable large-scale scanning of all possible feature combinations to identify the one of optimal performance in RNA-associated interaction prediction. The effectiveness of RNAincoder was extensively validated by case studies on benchmark datasets. All in all, RNAincoder is distinguished for its capability in providing a more accurate representation of RNA-associated interactions, which makes it an indispensable complement to other available tools. RNAincoder can be accessed at https://idrblab.org/rnaincoder/.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
RNA
/
Biologia Computacional
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China