Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency.
Nucleic Acids Res
; 51(13): 6966-6980, 2023 07 21.
Article
em En
| MEDLINE
| ID: mdl-37246708
Prime editing systems have enabled the incorporation of precise edits within a genome without introducing double strand breaks. Previous studies defined an optimal primer binding site (PBS) length for the pegRNA of â¼13 nucleotides depending on the sequence composition. However, optimal PBS length characterization has been based on prime editing outcomes using plasmid or lentiviral expression systems. In this study, we demonstrate that for prime editor (PE) ribonucleoprotein complexes, the auto-inhibitory interaction between the PBS and the spacer sequence affects pegRNA binding efficiency and target recognition. Destabilizing this auto-inhibitory interaction by reducing the complementarity between the PBS-spacer region enhances prime editing efficiency in multiple prime editing formats. In the case of end-protected pegRNAs, a shorter PBS length with a PBS-target strand melting temperature near 37°C is optimal in mammalian cells. Additionally, a transient cold shock treatment of the cells post PE-pegRNA delivery further increases prime editing outcomes for pegRNAs with optimized PBS lengths. Finally, we show that prime editor ribonucleoprotein complexes programmed with pegRNAs designed using these refined parameters efficiently correct disease-related genetic mutations in patient-derived fibroblasts and efficiently install precise edits in primary human T cells and zebrafish.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Peixe-Zebra
/
Temperatura Baixa
/
Edição de Genes
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos