Your browser doesn't support javascript.
loading
Subcellular spatially resolved gene neighborhood networks in single cells.
Fang, Zhou; Ford, Adam J; Hu, Thomas; Zhang, Nicholas; Mantalaris, Athanasios; Coskun, Ahmet F.
Afiliação
  • Fang Z; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
  • Ford AJ; Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
  • Hu T; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
  • Zhang N; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
  • Mantalaris A; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Coskun AF; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Cell Rep Methods ; 3(5): 100476, 2023 May 22.
Article em En | MEDLINE | ID: mdl-37323566
Image-based spatial omics methods such as fluorescence in situ hybridization (FISH) generate molecular profiles of single cells at single-molecule resolution. Current spatial transcriptomics methods focus on the distribution of single genes. However, the spatial proximity of RNA transcripts can play an important role in cellular function. We demonstrate a spatially resolved gene neighborhood network (spaGNN) pipeline for the analysis of subcellular gene proximity relationships. In spaGNN, machine-learning-based clustering of subcellular spatial transcriptomics data yields subcellular density classes of multiplexed transcript features. The nearest-neighbor analysis produces heterogeneous gene proximity maps in distinct subcellular regions. We illustrate the cell-type-distinguishing capability of spaGNN using multiplexed error-robust FISH data of fibroblast and U2-OS cells and sequential FISH data of mesenchymal stem cells (MSCs), revealing tissue-source-specific MSC transcriptomics and spatial distribution characteristics. Overall, the spaGNN approach expands the spatial features that can be used for cell-type classification tasks.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Análise de Célula Única Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Análise de Célula Única Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos