Your browser doesn't support javascript.
loading
Investigating the Effects of Alltech Crop Science (ACS) Products on Plant Defence against Root-Knot Nematode Infestation.
Pulavarty, Anusha; Singh, Ankit; Young, Kira; Horgan, Karina; Kakouli-Duarte, Thomais.
Afiliação
  • Pulavarty A; Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland.
  • Singh A; Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland.
  • Young K; Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland.
  • Horgan K; Alltech Bioscience Centre, A86 X006 Dunboyne, Ireland.
  • Kakouli-Duarte T; Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland.
Microorganisms ; 11(7)2023 Jun 29.
Article em En | MEDLINE | ID: mdl-37512873
Two formulations of Alltech Crop Science products (ACS), a proprietary blend of fermentation products and plant extracts with micronutrients (ACS5075), and a microbial based product (ACS3048), were tested to understand (1) their impact on the tomato plant immune response and (2) whether they are priming a resistance response in plants against root knot nematodes (RKN). Research findings reported previously indicate that tomato plants pre-treated with ACS5075 and ACS3048 were found less sensitive to Meloidogyne javanica infection. In the current study, the expression of six defence-related genes (PR-1, PR-3, PR-5T, ACO, CAT and JERF 3), relative to a housekeeping gene, were monitored via RT-PCR. Results suggest that the treatment with ACS5075 enhanced ACO and PR-1 gene expression levels, both post- treatment and post-infection with M. javanica. Reduced M. javanica infestation that was reported in the previous study could be attributed to the increased expression of these genes in the ACS5075-treated plants. Tomato plants treated with ACS3048, but without RKN infection, also demonstrated higher levels of ACO and PR-1 gene expression. Subsequently, 2D-gel electrophoresis was performed to study the differential protein expression in leaf tissues of treated tomato plants in an effort to elucidate a possible mechanism of action for these products. Protein spot 1 was identified as 'disease resistance protein RPP13-like', protein spot 2 as 'phosphatidylinositol 4-phosphate 5-kinase 2', spot 3 as 'protein SABRE like' and protein spot 4 as 'uncharacterized protein'. Overall research findings indicate that the ACS products could be used as plant immunity-boosting agents, as they play a significant role in the expression of certain genes and proteins associated with plant defence.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irlanda

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irlanda