Your browser doesn't support javascript.
loading
Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq.
Tyler, Scott R; Lozano-Ojalvo, Daniel; Guccione, Ernesto; Schadt, Eric E.
Afiliação
  • Tyler SR; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. scottyler89@gmail.com.
  • Lozano-Ojalvo D; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. scottyler89@gmail.com.
  • Guccione E; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Schadt EE; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Commun ; 15(1): 699, 2024 Jan 24.
Article em En | MEDLINE | ID: mdl-38267438
ABSTRACT
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Análise da Expressão Gênica de Célula Única Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Análise da Expressão Gênica de Célula Única Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos