Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq.
Nat Commun
; 15(1): 699, 2024 Jan 24.
Article
em En
| MEDLINE
| ID: mdl-38267438
ABSTRACT
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Análise da Expressão Gênica de Célula Única
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Estados Unidos