Improved temporal resolution and acceleration on 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) using an interpolation algorithm on the temporal axis and compressed sensing-sensitivity encoding (CS-SENSE).
Magn Reson Imaging
; 109: 1-9, 2024 Jun.
Article
em En
| MEDLINE
| ID: mdl-38417470
ABSTRACT
PURPOSE:
Two major drawbacks of 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) are the low temporal resolution and long scanning time. We investigated the feasibility of increasing the temporal resolution and accelerating the scanning time on 4D-S-PACK by using CS-SENSE and PhyZiodynamics, a novel image-processing program that interpolates images between phases to generate new phases and reduces image noise.METHODS:
Seven healthy volunteers were scanned with a 3.0 T MR scanner to visualize the internal carotid artery (ICA) system. PhyZiodynamics is a novel image-processing that interpolates images between phases to generate new phases and reduces image noise, and by increasing temporal resolution using PhyZiodynamics, inflow dynamic data (reference) were acquired by changing the labeling durations (100-2000 msec, 31 phases) in 4D-S-PACK. From this set of data, we selected seven time intervals to calculate interpolated time points with up to 61 intervals using ×10 for the generation of interpolated phases with PhyZiodynamics. In the denoising process of PhyZiodynamics, we processed the none, low, medium, high noise reduction dataset images. The time intensity curve (TIC), the contrast-to-noise ratio (CNR) were evaluated. In accelerating with CS-SENSE for 4D-S-PACK, 4D-S-PACK were scanned different SENSE or CS-SENSE acceleration factors SENSE3, CS3-6. Signal intensity (SI), CNR, were evaluated for accelerating the 4D-S-PACK. With regard to arterial vascular visualization, we evaluated the middle cerebral artery (MCA M1-4 segments).RESULTS:
In increasing temporal resolution, the TIC showed a similar trend between the reference dataset and the interpolated dataset. As the noise reduction weight increased, the CNR of the interpolated dataset were increased compared to that of the reference dataset. In accelerating 4D-S-PACK, the SI values of the SENSE3 dataset and CS dataset with CS3-6 were no significant differences. The image noise increased with the increase of acceleration factor, and the CNR decreased with the increase of acceleration factor. Significant differences in CNR were observed between acceleration factor of SENSE3 and CS6 for the M1-4 (P < 0.05). Visualization of small arteries (M4) became less reliable in CS5 or CS6 images. Significant differences were found for the scores of M2, M3 and M4 segments between SENSE3 and CS6.CONCLUSION:
With PhyZiodynamics and CS-SENSE in 4D-S-PACK, we were able to shorten the scan time while improving the temporal resolution.Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Angiografia por Ressonância Magnética
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article