Your browser doesn't support javascript.
loading
Artificial intelligence of arterial Doppler waveforms to predict major adverse outcomes among patients with diabetes mellitus.
McBane, Robert D; Murphree, Dennis H; Liedl, David; Lopez-Jimenez, Francisco; Arruda-Olson, Adelaide; Scott, Christopher G; Prodduturi, Naresh; Nowakowski, Steve E; Rooke, Thom W; Casanegra, Ana I; Wysokinski, Waldemar E; Houghton, Damon E; Muthusamy, Kalpana; Wennberg, Paul W.
Afiliação
  • McBane RD; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN. Electronic address: mcbane.robert@mayo.edu.
  • Murphree DH; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN.
  • Liedl D; Gonda Vascular Center, Mayo Clinic, Rochester, MN.
  • Lopez-Jimenez F; Cardiovascular Department, Mayo Clinic, Rochester, MN; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN.
  • Arruda-Olson A; Cardiovascular Department, Mayo Clinic, Rochester, MN.
  • Scott CG; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN.
  • Prodduturi N; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN.
  • Nowakowski SE; Division of Engineering, Mayo Clinic, Rochester, MN.
  • Rooke TW; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN.
  • Casanegra AI; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN.
  • Wysokinski WE; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN.
  • Houghton DE; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN.
  • Muthusamy K; Division of Endocrinology, Mayo Clinic, Rochester, MN.
  • Wennberg PW; Gonda Vascular Center, Mayo Clinic, Rochester, MN; Cardiovascular Department, Mayo Clinic, Rochester, MN.
J Vasc Surg ; 80(1): 251-259.e3, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38417709
ABSTRACT

OBJECTIVE:

Patients with diabetes mellitus (DM) are at increased risk for peripheral artery disease (PAD) and its complications. Arterial calcification and non-compressibility may limit test interpretation in this population. Developing tools capable of identifying PAD and predicting major adverse cardiac event (MACE) and limb event (MALE) outcomes among patients with DM would be clinically useful. Deep neural network analysis of resting Doppler arterial waveforms was used to detect PAD among patients with DM and to identify those at greatest risk for major adverse outcome events.

METHODS:

Consecutive patients with DM undergoing lower limb arterial testing (April 1, 2015-December 30, 2020) were randomly allocated to training, validation, and testing subsets (60%, 20%, and 20%). Deep neural networks were trained on resting posterior tibial arterial Doppler waveforms to predict all-cause mortality, MACE, and MALE at 5 years using quartiles based on the distribution of the prediction score.

RESULTS:

Among 11,384 total patients, 4211 patients with DM met study criteria (mean age, 68.6 ± 11.9 years; 32.0% female). After allocating the training and validation subsets, the final test subset included 856 patients. During follow-up, there were 262 deaths, 319 MACE, and 99 MALE. Patients in the upper quartile of prediction based on deep neural network analysis of the posterior tibial artery waveform provided independent prediction of death (hazard ratio [HR], 3.58; 95% confidence interval [CI], 2.31-5.56), MACE (HR, 2.06; 95% CI, 1.49-2.91), and MALE (HR, 13.50; 95% CI, 5.83-31.27).

CONCLUSIONS:

An artificial intelligence enabled analysis of a resting Doppler arterial waveform permits identification of major adverse outcomes including all-cause mortality, MACE, and MALE among patients with DM.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Valor Preditivo dos Testes / Ultrassonografia Doppler / Doença Arterial Periférica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Valor Preditivo dos Testes / Ultrassonografia Doppler / Doença Arterial Periférica Idioma: En Ano de publicação: 2024 Tipo de documento: Article