Your browser doesn't support javascript.
loading
Ginsenoside Rd enhances blood-brain barrier integrity after cerebral ischemia/reperfusion by alleviating endothelial cells ferroptosis via activation of NRG1/ErbB4-mediated PI3K/Akt/mTOR signaling pathway.
Hu, Sheng; Fei, Yuxiang; Jin, Chenchen; Yao, Jun; Ding, Haiyan; Wang, Jianing; Liu, Chao.
Afiliação
  • Hu S; College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830017, PR China.
  • Fei Y; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
  • Jin C; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
  • Yao J; College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, 830017, PR China.
  • Ding H; College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, 830017, PR China. Electronic address: 88433449@qq.com.
  • Wang J; Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, PR China. Electronic address: wangjianing@njmu.edu.cn.
  • Liu C; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China. Electronic address: liuchaogermany@sina.cn.
Neuropharmacology ; 251: 109929, 2024 Jun 15.
Article em En | MEDLINE | ID: mdl-38521230
ABSTRACT
The incidence of ischemic stroke is increasing year by year and showing a younger trend. Impaired blood-brain barrier (BBB) is one of the pathological manifestations caused by cerebral ischemia, leading to poor prognosis of patients. Accumulating evidence indicates that ferroptosis is involved in cerebral ischemia/reperfusion injury (CIRI). We have previously demonstrated that Ginsenoside Rd (G-Rd) protects against CIRI-induced neuronal injury. However, whether G-Rd can attenuate CIRI-induced disruption of the BBB remains unclear. In this study, we found that G-Rd could upregulate the levels of ZO-1, occludin, and claudin-5 in ipsilateral cerebral microvessels and bEnd.3 cells, reduce endothelial cells (ECs) loss and Evans blue (EB) leakage, and ultimately improve BBB integrity after CIRI. Interestingly, the expressions of ACSL4 and COX2 were upregulated, the expressions of GPX4 and xCT were downregulated, the levels of GSH was decreased, and the levels of MDA and Fe2+ were increased in ischemic tissues and bEnd.3 cells after CIRI, suggesting that ECs ferroptosis occurred after CIRI. However, G-Rd can alleviate CIRI-induced BBB disruption by inhibiting ECs ferroptosis. Mechanistically, G-Rd prevented tight junction loss and BBB leakage by upregulating NRG1, activating its tyrosine kinase ErbB4 receptor, and then activating downstream PI3K/Akt/mTOR signaling, thereby inhibiting CIRI-induced ferroptosis in ECs. Taken together, these data provides data support for G-Rd as a promising therapeutic drug for cerebral ischemia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Neuregulina-1 / Ginsenosídeos / Ferroptose Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Neuregulina-1 / Ginsenosídeos / Ferroptose Idioma: En Ano de publicação: 2024 Tipo de documento: Article