Unsupervised OCT image despeckling with ground-truth- and repeated-scanning-free features.
Opt Express
; 32(7): 11934-11951, 2024 Mar 25.
Article
em En
| MEDLINE
| ID: mdl-38571030
ABSTRACT
Optical coherence tomography (OCT) can resolve biological three-dimensional tissue structures, but it is inevitably plagued by speckle noise that degrades image quality and obscures biological structure. Recently unsupervised deep learning methods are becoming more popular in OCT despeckling but they still have to use unpaired noisy-clean images or paired noisy-noisy images. To address the above problem, we propose what we believe to be a novel unsupervised deep learning method for OCT despeckling, termed Double-free Net, which eliminates the need for ground truth data and repeated scanning by sub-sampling noisy images and synthesizing noisier images. In comparison to existing unsupervised methods, Double-free Net obtains superior denoising performance when trained on datasets comprising retinal and human tissue images without clean images. The efficacy of Double-free Net in denoising holds significant promise for diagnostic applications in retinal pathologies and enhances the accuracy of retinal layer segmentation. Results demonstrate that Double-free Net outperforms state-of-the-art methods and exhibits strong convenience and adaptability across different OCT images.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Tomografia de Coerência Óptica
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article