Your browser doesn't support javascript.
loading
The Janus face of endogenous neuronal tPA: promoting self-protection and worsening the death of neighboring neurons.
Prunotto, Paul; Marie, Pauline; Lebouvier, Laurent; Hommet, Yannick; Vivien, Denis; Ali, Carine.
Afiliação
  • Prunotto P; Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, 14000, France.
  • Marie P; Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, 14000, France.
  • Lebouvier L; Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, 14000, France.
  • Hommet Y; Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, 14000, France.
  • Vivien D; Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, 14000, France.
  • Ali C; Department of clinical research, CHU de Caen Normandie, Caen, France.
Cell Death Dis ; 15(4): 261, 2024 Apr 12.
Article em En | MEDLINE | ID: mdl-38609369
ABSTRACT
Recombinant tissue-type plasminogen activator (r-tPA/Actilyse) stands as the prevailing pharmacological solution for treating ischemic stroke patients, of whom because their endogenous circulating tPA alone is not sufficient to rescue reperfusion and to promote favorable outcome. Beyond the tPA contributed by circulating endothelial cells and hepatocytes, neurons also express tPA, sparking debates regarding its impact on neuronal fate ranging from pro-survival to neurotoxic properties. In order to investigate the role of neuronal tPA during brain injuries, we developed models leading to its conditional deletion in neurons, employing AAV9-pPlat-GFP and AAV9-pPlat-Cre-GFP along with tPA floxed mice. These models were subjected to N-methyl-D-aspartate (NMDA)-induced excitotoxicity or thromboembolic ischemic stroke in mice. Initially, we established that our AAV9 constructs selectively transduce neurons, bypassing other brain cell types. Subsequently, we demonstrated that tPA-expressing neurons exhibit greater resistance against NMDA-induced excitotoxicity compared to tPA negative neurons. The targeted removal of tPA in neurons heightened the susceptibility of these neurons to cell death and prevented a paracrine neurotoxic effect on tPA non-expressing neurons. Under ischemic conditions, the self-neuroprotective influence of tPA encompassed both excitatory (GFP+/Tbr1+) and inhibitory (GFP+/GABA+) neurons. Our data indicate that endogenous neuronal tPA is a protective or deleterious factor against neuronal death in an excitotoxic/ischemic context, depending on whether it acts as an autocrine or a paracrine mediator.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / AVC Isquêmico Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / AVC Isquêmico Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: França