Your browser doesn't support javascript.
loading
Exagamglogene Autotemcel for Severe Sickle Cell Disease.
Frangoul, Haydar; Locatelli, Franco; Sharma, Akshay; Bhatia, Monica; Mapara, Markus; Molinari, Lyndsay; Wall, Donna; Liem, Robert I; Telfer, Paul; Shah, Ami J; Cavazzana, Marina; Corbacioglu, Selim; Rondelli, Damiano; Meisel, Roland; Dedeken, Laurence; Lobitz, Stephan; de Montalembert, Mariane; Steinberg, Martin H; Walters, Mark C; Eckrich, Michael J; Imren, Suzan; Bower, Laura; Simard, Christopher; Zhou, Weiyu; Xuan, Fengjuan; Morrow, Phuong Khanh; Hobbs, William E; Grupp, Stephan A.
Afiliação
  • Frangoul H; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Locatelli F; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Sharma A; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Bhatia M; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Mapara M; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Molinari L; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Wall D; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Liem RI; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Telfer P; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Shah AJ; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Cavazzana M; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Corbacioglu S; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Rondelli D; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Meisel R; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Dedeken L; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Lobitz S; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • de Montalembert M; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Steinberg MH; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Walters MC; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Eckrich MJ; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Imren S; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Bower L; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Simard C; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Zhou W; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Xuan F; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Morrow PK; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Hobbs WE; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
  • Grupp SA; From Sarah Cannon Research Institute at the Children's Hospital at TriStar Centennial (H.F.), Nashville, and Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis (A.S.) - both in Tennessee; IRCCS, Ospedale Pediatrico Bambino Gesù, Catholic University of th
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Article em En | MEDLINE | ID: mdl-38661449
ABSTRACT

BACKGROUND:

Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A.

METHODS:

We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed.

RESULTS:

A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred.

CONCLUSIONS:

Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hemoglobina Fetal / Transplante de Células-Tronco Hematopoéticas / Anemia Falciforme País/Região como assunto: America do norte / Europa Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hemoglobina Fetal / Transplante de Células-Tronco Hematopoéticas / Anemia Falciforme País/Região como assunto: America do norte / Europa Idioma: En Ano de publicação: 2024 Tipo de documento: Article