Your browser doesn't support javascript.
loading
The mitochondrial carboxylase PCCA interacts with Listeria monocytogenes phospholipase PlcB to modulate bacterial survival.
Wang, Jing; Cui, Mingzhu; Liu, Yucong; Chen, Mianmian; Xu, Jiali; Xia, Jing; Sun, Jing; Jiang, Lingli; Fang, Weihuan; Song, Houhui; Cheng, Changyong.
Afiliação
  • Wang J; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Cui M; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Liu Y; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Chen M; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Xu J; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Xia J; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Sun J; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Jiang L; Ningbo College of Health Sciences, Ningbo, Zhejiang, China.
  • Fang W; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Song H; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
  • Cheng C; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Manageme
Appl Environ Microbiol ; 90(6): e0213523, 2024 Jun 18.
Article em En | MEDLINE | ID: mdl-38727222
ABSTRACT
Listeria monocytogenes, a prominent foodborne pathogen responsible for zoonotic infections, owes a significant portion of its virulence to the presence of the phospholipase PlcB. In this study, we performed an in-depth examination of the intricate relationship between L. monocytogenes PlcB and host cell mitochondria, unveiling a novel participant in bacterial survival the mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA). Our investigation uncovered previously unexplored levels of interaction and colocalization between PCCA and PlcB within host cells, with particular emphasis on the amino acids 504-508 of PCCA, which play a pivotal role in this partnership. To assess the effect of PCCA expression on L. monocytogenes proliferation, PCCA expression levels were manipulated by siRNA-si-PCCA or pCMV-N-HA-PCCA plasmid transfection. Our findings demonstrated a clear inverse correlation between PCCA expression levels and the proliferation of L. monocytogenes. Furthermore, the effect of L. monocytogenes infection on PCCA expression was investigated by assessing PCCA mRNA and protein expression in HeLa cells infected with L. monocytogenes. These results indicate that L. monocytogenes infection did not significantly alter PCCA expression. These findings led us to propose that PCCA represents a novel participant in L. monocytogenes survival, and its abundance has a detrimental impact on bacterial proliferation. This suggests that L. monocytogenes may employ PlcB-PCCA interactions to maintain stable PCCA expression, representing a unique pro-survival strategy distinct from that of other intracellular bacterial pathogens. IMPORTANCE Mitochondria represent attractive targets for pathogenic bacteria seeking to modulate host cellular processes to promote their survival and replication. Our current study has uncovered mitochondrial carboxylase propionyl-coenzyme A carboxylase (PCCA) as a novel host cell protein that interacts with L. monocytogenes PlcB. The results demonstrate that PCCA plays a negative regulatory role in L. monocytogenes infection, as heightened PCCA levels are associated with reduced bacterial survival and persistence. However, L. monocytogenes may exploit the PlcB-PCCA interaction to maintain stable PCCA expression and establish a favorable intracellular milieu for bacterial infection. Our findings shed new light on the intricate interplay between bacterial pathogens and host cell mitochondria, while also highlighting the potential of mitochondrial metabolic enzymes as antimicrobial agents.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Listeria monocytogenes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Listeria monocytogenes Idioma: En Ano de publicação: 2024 Tipo de documento: Article