Your browser doesn't support javascript.
loading
Multiple imputation for propensity score analysis with covariates missing at random: some clarity on "within" and "across" methods.
Nguyen, Trang Quynh; Stuart, Elizabeth A.
Afiliação
  • Nguyen TQ; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
  • Stuart EA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
Am J Epidemiol ; 193(10): 1470-1476, 2024 Oct 07.
Article em En | MEDLINE | ID: mdl-38863120
ABSTRACT
In epidemiology and the social sciences, propensity score methods are popular for estimating treatment effects using observational data, and multiple imputation is popular for handling covariate missingness. However, how to appropriately use multiple imputation for propensity score analysis is not completely clear. This paper aims to bring clarity on the consistency (or lack thereof) of methods that have been proposed, focusing on the "within" approach (where the effect is estimated separately in each imputed dataset and then the multiple estimates are combined) and the "across" approach (where typically propensity scores are averaged across imputed datasets before being used for effect estimation). We show that the within method is valid and can be used with any causal effect estimator that is consistent in the full-data setting. Existing across methods are inconsistent, but a different across method that averages the inverse probability weights across imputed datasets is consistent for propensity score weighting. We also comment on methods that rely on imputing a function of the missing covariate rather than the covariate itself, including imputation of the propensity score and of the probability weight. Based on consistency results and practical flexibility, we recommend generally using the standard within method. Throughout, we provide intuition to make the results meaningful to the broad audience of applied researchers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pontuação de Propensão Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pontuação de Propensão Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos