Your browser doesn't support javascript.
loading
An optimize adaptable method for determining the monosaccharide composition of pectic polysaccharides.
Wu, Jinghua; Zhu, Kai; Li, Junhui; Ye, Xingqian; Chen, Shiguo.
Afiliação
  • Wu J; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China.
  • Zhu K; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Sci
  • Li J; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Sci
  • Ye X; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Sci
  • Chen S; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Sci
Int J Biol Macromol ; 277(Pt 2): 133591, 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38960233
ABSTRACT
Pectic polysaccharides are considered the highly complex natural plant polysaccharides which plays a vital role in plant tissue structure and human health. Detailed characterization of the monosaccharide composition can provide insights into the pectic polysaccharide structure. Nevertheless, when analyzing the monosaccharides of pectic polysaccharide, it is crucial to address the issue of incomplete hydrolysis that can occur due to the formation of acid-induced precipitates. Based on above, the main purpose of this article is to provide an optimized method for monosaccharide analysis of pectic polysaccharides through acid hydrolysis optimization using high-performance anion exchange chromatography (HPAEC) The results indicate that reducing the sample concentration to 0.5 mg/mL effectively reduces the acid gelling phenomenon and promotes the complete hydrolysis of pectin polysaccharides. The optimized parameters for acid hydrolysis involve 110 °C for 6 h in 2 M TFA. Furthermore, the consistency of this method is assessed, along with its ability to analyze pectin polysaccharides from various fruits. This hydrolysis approach holds promise for enabling accurate quantification of monosaccharide composition in pectic polysaccharides.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China