Your browser doesn't support javascript.
loading
Differential responses of the phyllosphere abundant and rare microbes of Eucommia ulmoides to phytohormones.
Shao, Qiuyu; Ran, Qingsong; Li, Xu; Dong, Chunbo; Zhang, Yanwei; Han, Yanfeng.
Afiliação
  • Shao Q; Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
  • Ran Q; Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
  • Li X; Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
  • Dong C; Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China.
  • Zhang Y; Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, Guizhou 550018, China.
  • Han Y; Institute of Fungus Resources, Department of Ecology/Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China. Electronic address: swallow1128@126.com.
Microbiol Res ; 286: 127798, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38964073
ABSTRACT
Phyllosphere microbiota play a crucial role in plant productivity and adaptation, and the abundant and rare microbial taxa often possess distinct characteristics and ecological functions. However, it is unclear whether the different subcommunities of phyllosphere microbiota respond variably to the factors that influence their formation, which limits the understanding of community assembly. The effects of two phytohormones, namely, indole-3-acetic acid (IAA) and N6-(delta 2-isopentenyl)-adenine (IP), on the phyllosphere microbial subcommunities of Eucommia ulmoides were investigated using potted experiments. The results demonstrated that the phytohormones induced significant variations in the composition, diversity, and function of the abundant microbial subcommunity in the phyllosphere of E. ulmoides, however, their effects on the rare subcommunity were negligible, and their effects on the moderate subcommunity were between those of the abundant and rare taxa. The phytohormones also induced significant alterations in the phenotypic and physiological properties of E. ulmoides, which indirectly affected the phyllosphere microbial community. Leaf thickness and average leaf area were the main phenotypic variables that affected the composition of the phyllosphere microbial community. The total alkaloid content and activity of superoxide dismutase (SOD) were the main physiological variables that affected the composition of the phyllosphere microbial community. The phenotypic and physiological indices of E. ulmoides explained the variations in the phyllosphere microbial subcommunities in descending order abundant > moderate > rare taxa. These variables explained a significant proportion of the variations in the abundant taxa, and an insignificant proportion of the variations in the rare taxa. This study improves our understanding of the assembly of the phyllosphere microbiota, which provides important theoretical knowledge for future sustainable agriculture and forestry management based on the precise regulation of phyllosphere microbiota.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Bactérias / Folhas de Planta / Eucommiaceae / Microbiota / Ácidos Indolacéticos Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Bactérias / Folhas de Planta / Eucommiaceae / Microbiota / Ácidos Indolacéticos Idioma: En Ano de publicação: 2024 Tipo de documento: Article