Your browser doesn't support javascript.
loading
EBF1-COX4I2 signaling axis promotes a myofibroblast-like phenotype in cancer-associated fibroblasts (CAFs) and is associated with an immunosuppressive microenvironment.
Li, Jie-Pin; Liu, Yuan-Jie; Wang, Shuang-Shuang; Lu, Zhi-Hua; Ye, Qian-Wen; Zhou, Jin-Yong; Zou, Xi; Chen, Yu-Gen.
Afiliação
  • Li JP; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Liu YJ; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Wang SS; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Lu ZH; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Ye QW; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Zhou JY; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
  • Zou X; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nan
  • Chen YG; Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Nanjing, Jiangsu 210029, China; Nanjing University of Chinese Medicine, Nan
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Article em En | MEDLINE | ID: mdl-39002521
ABSTRACT
Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China