Your browser doesn't support javascript.
loading
Capabilities of satellite Geostationary Environment Monitoring Spectrometer (GEMS) NO2 data for hourly ambient NO2 exposure modeling.
Lee, Hyung Joo; Kim, Na Rae; Shin, Min Young.
Afiliação
  • Lee HJ; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea. Electronic address: hyungjoolee@postech.ac.kr.
  • Kim NR; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea.
  • Shin MY; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea.
Environ Res ; 261: 119633, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-39025348
ABSTRACT
The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary instrument that monitors hourly gaseous air pollutant levels, including nitrogen dioxide (NO2). Using the first-of-its-kind capabilities of GEMS NO2 data, we examined how well GEMS NO2 levels can explain the spatiotemporal variabilities in hourly NO2 concentrations in the Republic of Korea for the year 2022. A correlation analysis between hourly GEMS NO2 levels and ground NO2 concentrations showed a higher spatial correlation [Pearson r = 0.56 (SD = 0.20)] than a temporal one [Pearson r = 0.42 (SD = 0.14)], on average. To take advantage of the enhanced spatial predictability of GEMS NO2 data, we employed a mixed effects model to allow hour-specific relationships between GEMS NO2 and NO2 concentrations on a given day in each region and subsequently estimated hourly NO2 concentrations in all urban and rural areas. The 10-fold cross validation demonstrated R2 = 0.72, mean absolute error (MAE) = 3.7 ppb, and root mean squared error (RMSE) = 5.5 ppb. The hourly variations of the relationships were attributed particularly to those of wind speed among meteorological parameters considered in this study. The spatial distributions of hourly estimated NO2 concentrations were highly correlated between hours [average r = 0.91 (SD = 0.06)]. Nonetheless, they represented the diurnal patterns of urban versus rural NO2 contrasts during the day [urban/rural NO2 ratios from 1.22 (5 p.m.) to 1.37 (12 p.m.)]. The newly retrieved GEMS NO2 data enable temporally as well as spatially resolved NO2 exposure assessment. In combination with the time-activity patterns of individual subjects, the GEMS NO2 data can generate 'sub-population' exposure estimates and therefore enhance health effect studies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Poluentes Atmosféricos / Dióxido de Nitrogênio País/Região como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monitoramento Ambiental / Poluentes Atmosféricos / Dióxido de Nitrogênio País/Região como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article