Your browser doesn't support javascript.
loading
Enhanced degradation of phenolic pollutants by a novel cold-adapted laccase from Peribacillus simplex.
Hao, Mengyao; Yao, JiaXin; Chen, Jianxiong; Zhu, Rui; Gu, Zhenghua; Xin, Yu; Zhang, Liang.
Afiliação
  • Hao M; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
  • Yao J; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
  • Chen J; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
  • Zhu R; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
  • Gu Z; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China.
  • Xin Y; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China. Electronic address: yuxin@jiangnan.edu.cn.
  • Zhang L; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; JITRI Future Food Technology Research Institute Co., Ltd., 214200, China. Electronic address: zhangl@jiangnan.edu.cn.
Int J Biol Macromol ; 277(Pt 4): 134583, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39122074
ABSTRACT
Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biodegradação Ambiental / Temperatura Baixa / Lacase Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biodegradação Ambiental / Temperatura Baixa / Lacase Idioma: En Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China