Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Cell ; 186(19): 4085-4099.e15, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37714134

ABSTRACT

Many sequence variants have additive effects on blood lipid levels and, through that, on the risk of coronary artery disease (CAD). We show that variants also have non-additive effects and interact to affect lipid levels as well as affecting variance and correlations. Variance and correlation effects are often signatures of epistasis or gene-environmental interactions. These complex effects can translate into CAD risk. For example, Trp154Ter in FUT2 protects against CAD among subjects with the A1 blood group, whereas it associates with greater risk of CAD in others. His48Arg in ADH1B interacts with alcohol consumption to affect lipid levels and CAD. The effect of variants in TM6SF2 on blood lipids is greatest among those who never eat oily fish but absent from those who often do. This work demonstrates that variants that affect variance of quantitative traits can allow for the discovery of epistasis and interactions of variants with the environment.


Subject(s)
Coronary Artery Disease , Animals , Humans , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Epistasis, Genetic , Phenotype , Lipids/blood , ABO Blood-Group System
2.
Nature ; 607(7920): 732-740, 2022 07.
Article in English | MEDLINE | ID: mdl-35859178

ABSTRACT

Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.


Subject(s)
Biological Specimen Banks , Databases, Genetic , Genetic Variation , Genome, Human , Genomics , Whole Genome Sequencing , Africa/ethnology , Asia/ethnology , Cohort Studies , Conserved Sequence , Exons/genetics , Genome, Human/genetics , Haplotypes/genetics , Humans , INDEL Mutation , Ireland/ethnology , Microsatellite Repeats , Polymorphism, Single Nucleotide/genetics , United Kingdom
3.
Nature ; 600(7890): 675-679, 2021 12.
Article in English | MEDLINE | ID: mdl-34887591

ABSTRACT

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide/genetics , Population Groups
4.
N Engl J Med ; 389(19): 1741-1752, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37937776

ABSTRACT

BACKGROUND: In 2021, the American College of Medical Genetics and Genomics (ACMG) recommended reporting actionable genotypes in 73 genes associated with diseases for which preventive or therapeutic measures are available. Evaluations of the association of actionable genotypes in these genes with life span are currently lacking. METHODS: We assessed the prevalence of coding and splice variants in genes on the ACMG Secondary Findings, version 3.0 (ACMG SF v3.0), list in the genomes of 57,933 Icelanders. We assigned pathogenicity to all reviewed variants using reported evidence in the ClinVar database, the frequency of variants, and their associations with disease to create a manually curated set of actionable genotypes (variants). We assessed the relationship between these genotypes and life span and further examined the specific causes of death among carriers. RESULTS: Through manual curation of 4405 sequence variants in the ACMG SF v3.0 genes, we identified 235 actionable genotypes in 53 genes. Of the 57,933 participants, 2306 (4.0%) carried at least one actionable genotype. We found shorter median survival among persons carrying actionable genotypes than among noncarriers. Specifically, we found that carrying an actionable genotype in a cancer gene was associated with survival that was 3 years shorter than that among noncarriers, with causes of death among carriers attributed primarily to cancer-related conditions. Furthermore, we found evidence of association between carrying an actionable genotype in certain genes in the cardiovascular disease group and a reduced life span. CONCLUSIONS: On the basis of the ACMG SF v3.0 guidelines, we found that approximately 1 in 25 Icelanders carried an actionable genotype and that carrying such a genotype was associated with a reduced life span. (Funded by deCODE Genetics-Amgen.).


Subject(s)
Disease , Genomics , Longevity , Humans , Alleles , Genetic Testing , Genetic Variation , Genotype , Iceland/epidemiology , Longevity/genetics , Disease/genetics , Cardiovascular Diseases/genetics , Neoplasms/genetics
5.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931049

ABSTRACT

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Chromatin/genetics , Genomics , Humans , Lipids/genetics , Polymorphism, Single Nucleotide/genetics
6.
Ann Intern Med ; 177(6): 711-718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768457

ABSTRACT

BACKGROUND: Monoclonal gammopathy of undetermined significance (MGUS) is a precursor of multiple myeloma (MM) and related conditions. In previous registry-based, retrospective studies, autoimmune diseases have been associated with MGUS. However, these studies were not based on a screened population and are therefore prone to ascertainment bias. OBJECTIVE: To examine whether MGUS is associated with autoimmune diseases. DESIGN: A cross-sectional study within iStopMM (Iceland Screens, Treats, or Prevents MM), a prospective, population-based screening study of MGUS. SETTING: Icelandic population of adults aged 40 years or older. PATIENTS: 75 422 persons screened for MGUS. MEASUREMENTS: Poisson regression for prevalence ratios (PRs) of MGUS among persons with or without an autoimmune disease, adjusted for age and sex. RESULTS: A total of 10 818 participants had an autoimmune disorder, of whom 599 had MGUS (61 with a prior clinical diagnosis and 538 diagnosed at study screening or evaluation). A diagnosis of an autoimmune disease was not associated with MGUS (PR, 1.05 [95% CI, 0.97 to 1.15]). However, autoimmune disease diagnoses were associated with a prior clinical diagnosis of MGUS (PR, 2.11 [CI, 1.64 to 2.70]). LIMITATION: Registry data were used to gather information on autoimmune diseases, and the homogeneity of the Icelandic population may limit the generalizability of these results. CONCLUSION: The study did not find an association between autoimmune disease and MGUS in a systematically screened population. Previous studies not done in systematically screened populations have likely been subject to ascertainment bias. The findings indicate that recommendations to routinely screen patients with autoimmune disease for MGUS may not be warranted. PRIMARY FUNDING SOURCE: The International Myeloma Foundation and the European Research Council.


Subject(s)
Autoimmune Diseases , Mass Screening , Monoclonal Gammopathy of Undetermined Significance , Humans , Autoimmune Diseases/epidemiology , Autoimmune Diseases/complications , Autoimmune Diseases/diagnosis , Male , Female , Monoclonal Gammopathy of Undetermined Significance/epidemiology , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/complications , Iceland/epidemiology , Middle Aged , Cross-Sectional Studies , Aged , Adult , Mass Screening/methods , Prevalence , Prospective Studies
7.
Ann Intern Med ; 177(4): 449-457, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560901

ABSTRACT

BACKGROUND: Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic precursor conditions to multiple myeloma and related disorders. Smoldering multiple myeloma is distinguished from MGUS by 10% or greater bone marrow plasma cells (BMPC) on sampling, has a higher risk for progression, and requires specialist management. OBJECTIVE: To develop a multivariable prediction model that predicts the probability that a person with presumed MGUS has 10% or greater BMPC (SMM or worse by bone marrow criteria) to inform the decision to obtain a bone marrow sample and compare its performance to the Mayo Clinic risk stratification model. DESIGN: iStopMM (Iceland Screens, Treats or Prevents Multiple Myeloma), a prospective population-based screening study of MGUS. (ClinicalTrials.gov: NCT03327597). SETTING: Icelandic population of adults aged 40 years or older. PATIENTS: 1043 persons with IgG, IgA, light-chain, and biclonal MGUS detected by screening and an interpretable bone marrow sample. MEASUREMENTS: Monoclonal gammopathy of undetermined significance isotype; monoclonal protein concentration; free light-chain ratio; and total IgG, IgM, and IgA concentrations were used as predictors. Bone marrow plasma cells were categorized as 0% to 4%, 5% to 9%, 10% to 14%, or 15% or greater. RESULTS: The c-statistic for SMM or worse was 0.85 (95% CI, 0.82 to 0.88), and calibration was excellent (intercept, -0.07; slope, 0.95). At a threshold of 10% predicted risk for SMM or worse, sensitivity was 86%, specificity was 67%, positive predictive value was 32%, and negative predictive value was 96%. Compared with the Mayo Clinic model, the net benefit for the decision to refer for sampling was between 0.13 and 0.30 higher over a range of plausible low-risk thresholds. LIMITATION: The prediction model will require external validation. CONCLUSION: This accurate prediction model for SMM or worse was developed in a population-based cohort of persons with presumed MGUS and may be used to defer bone marrow sampling and referral to hematology. PRIMARY FUNDING SOURCE: International Myeloma Foundation and the European Research Council.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Paraproteinemias , Smoldering Multiple Myeloma , Adult , Humans , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/epidemiology , Multiple Myeloma/diagnosis , Multiple Myeloma/epidemiology , Multiple Myeloma/therapy , Bone Marrow , Cohort Studies , Prospective Studies , Immunoglobulin A , Immunoglobulin G , Disease Progression
8.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38052102

ABSTRACT

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fertility , Genome-Wide Association Study , Twinning, Dizygotic , Animals , Female , Humans , Pregnancy , Carrier Proteins/genetics , Fertility/genetics , Hormones , Proteins/genetics , United States , Zebrafish/genetics
9.
Haematologica ; 109(7): 2250-2255, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38205512

ABSTRACT

There is some evidence that a prior cancer is a risk factor for the development of multiple myeloma (MM). If this is true, prior cancer should be associated with a higher prevalence or increased progression rate of monoclonal gammopathy of undetermined significance (MGUS), the precursor of MM and related disorders. Those with a history of cancer might therefore constitute a target population for MGUS screening. This two-part study is the first study to evaluate a relationship between MGUS and prior cancers. First, we evaluated whether prior cancers were associated with having MGUS at the time of screening in the Iceland Screens Treats or Prevents Multiple Myeloma (iStopMM) study that includes 75,422 individuals screened for MGUS. Next, we evaluated the association of prior cancer and the progression of MGUS to MM and related disorders in a population-based cohort of 13,790 Swedish individuals with MGUS. A history of prior cancer was associated with a modest increase in the risk of MGUS (odds ratio=1.10; 95% confidence interval: 1.00-1.20). This excess risk was limited to prior cancers in the year preceding MGUS screening. A history of prior cancer was associated with progression of MGUS, except for myeloid malignancies which were associated with a lower risk of progression (hazard ratio=0.37; 95% confidence interval: 0.16-0.89; P=0.028). Our findings indicate that a prior cancer is not a significant etiological factor in plasma cell disorders. The findings do not warrant MGUS screening or different management of MGUS in those with a prior cancer.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Humans , Iceland/epidemiology , Monoclonal Gammopathy of Undetermined Significance/epidemiology , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Sweden/epidemiology , Male , Female , Middle Aged , Aged , Risk Factors , Multiple Myeloma/epidemiology , Multiple Myeloma/diagnosis , Multiple Myeloma/etiology , Neoplasms/epidemiology , Neoplasms/etiology , Neoplasms/diagnosis , Disease Progression , Adult , Population Surveillance
11.
J Intern Med ; 293(3): 293-308, 2023 03.
Article in English | MEDLINE | ID: mdl-36385445

ABSTRACT

Estimation of kidney function is often part of daily clinical practice, mostly done by using the endogenous glomerular filtration rate (GFR)-markers creatinine or cystatin C. A recommendation to use both markers in parallel in 2010 has resulted in new knowledge concerning the pathophysiology of kidney disorders by the identification of a new set of kidney disorders, selective glomerular hypofiltration syndromes. These syndromes, connected to strong increases in mortality and morbidity, are characterized by a selective reduction in the glomerular filtration of 5-30 kDa molecules, such as cystatin C, compared to the filtration of small molecules <1 kDa dominating the glomerular filtrate, for example water, urea and creatinine. At least two types of such disorders, shrunken or elongated pore syndrome, are possible according to the pore model for glomerular filtration. Selective glomerular hypofiltration syndromes are prevalent in investigated populations, and patients with these syndromes often display normal measured GFR or creatinine-based GFR-estimates. The syndromes are characterized by proteomic changes promoting the development of atherosclerosis, indicating antibodies and specific receptor-blocking substances as possible new treatment modalities. Presently, the KDIGO guidelines for diagnosing kidney disorders do not recommend cystatin C as a general marker of kidney function and will therefore not allow the identification of a considerable number of patients with selective glomerular hypofiltration syndromes. Furthermore, as cystatin C is uninfluenced by muscle mass, diet or variations in tubular secretion and cystatin C-based GFR-estimation equations do not require controversial race or sex terms, it is obvious that cystatin C should be a part of future KDIGO guidelines.


Subject(s)
Cystatin C , Kidney Diseases , Humans , Proteome , Creatinine , Proteomics , Glomerular Filtration Rate/physiology , Kidney Diseases/diagnosis , Biomarkers
12.
Haematologica ; 108(12): 3392-3398, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37439374

ABSTRACT

Monoclonal gammopathy of undetermined significance (MGUS) is an asymptomatic precursor condition that precedes multiple myeloma and related disorders but has also been associated with other medical conditions. Since systematic screening is not recommended, MGUS is typically diagnosed due to underlying diseases and most cases are not diagnosed. Most previous studies on MGUS disease associations have been based on clinical cohorts, possibly resulting in selection bias. Here we estimate this selection bias by comparing clinically diagnosed and screened individuals with MGUS with regards to demographics, laboratory features, and comorbidities. A total of 75,422 participants in the Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) study were screened for MGUS by serum protein electrophoresis, immunofixation and free light chain assay (clinicaltrials gov. Identifier: NCT03327597). We identified 3,352 individuals with MGUS, whereof 240 had previously been clinically diagnosed (clinical MGUS), and crosslinked our data with large, nationwide registries for information on comorbidities. Those with clinical MGUS were more likely to have at least one comorbidity (odds ratio=2.24; 95% confidence interval: 1.30-4.19), and on average had more comorbidities than the screened MGUS group (3.23 vs. 2.36, mean difference 0.68; 95% confidence interval: 0.46-0.90). They were also more likely to have rheumatological disease, neurological disease, chronic kidney disease, liver disease, heart failure, or endocrine disorders. These findings indicate that individuals with clinical MGUS have more comorbidities than the general MGUS population and that previous studies have been affected by significant selection bias. Our findings highlight the importance of screening data when studying biological and epidemiological implications of MGUS.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Paraproteinemias , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/epidemiology , Multiple Myeloma/complications , Monoclonal Gammopathy of Undetermined Significance/diagnosis , Monoclonal Gammopathy of Undetermined Significance/epidemiology , Iceland , Paraproteinemias/diagnosis , Paraproteinemias/epidemiology , Comorbidity , Disease Progression
13.
Arterioscler Thromb Vasc Biol ; 41(10): 2616-2628, 2021 10.
Article in English | MEDLINE | ID: mdl-34407635

ABSTRACT

Objective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.


Subject(s)
Apolipoprotein B-100/genetics , Cardiovascular Diseases/genetics , Hyperlipoproteinemia Type II/genetics , Lipids/blood , Mutation , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/therapy , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/ethnology , Iceland/epidemiology , Male , Middle Aged , Phenotype , Prevalence , Prognosis , Risk Assessment , Risk Factors , Young Adult
14.
Hum Mol Genet ; 28(7): 1199-1211, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30476138

ABSTRACT

Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context.


Subject(s)
Biomarkers/analysis , Biomarkers/urine , Genetic Variation/genetics , Adult , Aged , Alleles , Female , Hematuria/genetics , Hematuria/urine , Humans , Hydrogen-Ion Concentration , Iceland , Ketosis/genetics , Ketosis/urine , Kidney/metabolism , Male , Middle Aged , Proteinuria/genetics , Proteinuria/urine , Sodium-Glucose Transporter 2/genetics , Whole Genome Sequencing/methods
15.
Eur Heart J ; 41(28): 2618-2628, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32702746

ABSTRACT

AIMS: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols. METHODS AND RESULTS: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4). CONCLUSIONS: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis.


Subject(s)
Coronary Artery Disease , Phytosterols , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Humans , Iceland , Sterols
16.
PLoS Genet ; 13(3): e1006659, 2017 03.
Article in English | MEDLINE | ID: mdl-28273074

ABSTRACT

IL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (ß = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.


Subject(s)
Asthma/genetics , Eosinophils/metabolism , Interleukin-33/genetics , Mutation , Adolescent , Adult , Aged , Aged, 80 and over , Alternative Splicing , Animals , Binding Sites , Biological Assay , Child , Child, Preschool , Denmark , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Iceland , Infant , Infant, Newborn , Introns , Male , Mice , Mice, Transgenic , Middle Aged , Netherlands , Young Adult
17.
Hum Mol Genet ; 26(12): 2364-2376, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28398513

ABSTRACT

Common sequence variants at the haptoglobin gene (HP) have been associated with blood lipid levels. Through whole-genome sequencing of 8,453 Icelanders, we discovered a splice donor founder mutation in HP (NM_001126102.1:c.190 + 1G > C, minor allele frequency = 0.56%). This mutation occurs on the HP1 allele of the common copy number variant in HP and leads to a loss of function of HP1. It associates with lower levels of haptoglobin (P = 2.1 × 10-54), higher levels of non-high density lipoprotein cholesterol (ß = 0.26 mmol/l, P = 2.6 × 10-9) and greater risk of coronary artery disease (odds ratio = 1.30, 95% confidence interval: 1.10-1.54, P = 0.0024). Through haplotype analysis and with RNA sequencing, we provide evidence of a causal relationship between one of the two haptoglobin isoforms, namely Hp1, and lower levels of non-HDL cholesterol. Furthermore, we show that the HP1 allele associates with various other quantitative biological traits.


Subject(s)
Coronary Artery Disease/genetics , Haptoglobins/genetics , Adult , Alleles , Base Sequence , Coronary Artery Disease/metabolism , DNA Copy Number Variations/genetics , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Genetic Variation , Haptoglobins/metabolism , Humans , Iceland , Lipids/blood , Lipids/genetics , Lipoproteins/genetics , Male , Mutation , Odds Ratio , RNA Splice Sites/genetics , Risk Factors
18.
Am J Hum Genet ; 98(5): 898-908, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27132594

ABSTRACT

Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.


Subject(s)
Fertility/genetics , Genetic Variation/genetics , Polycystic Ovary Syndrome/genetics , Twins, Dizygotic/genetics , Anxiety/genetics , Case-Control Studies , Depression/genetics , Family , Female , Follicle Stimulating Hormone/blood , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Mothers , Polycystic Ovary Syndrome/blood , Pregnancy
19.
N Engl J Med ; 374(22): 2131-41, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27192541

ABSTRACT

BACKGROUND: Several sequence variants are known to have effects on serum levels of non-high-density lipoprotein (HDL) cholesterol that alter the risk of coronary artery disease. METHODS: We sequenced the genomes of 2636 Icelanders and found variants that we then imputed into the genomes of approximately 398,000 Icelanders. We tested for association between these imputed variants and non-HDL cholesterol levels in 119,146 samples. We then performed replication testing in two populations of European descent. We assessed the effects of an implicated loss-of-function variant on the risk of coronary artery disease in 42,524 case patients and 249,414 controls from five European ancestry populations. An augmented set of genomes was screened for additional loss-of-function variants in a target gene. We evaluated the effect of an implicated variant on protein stability. RESULTS: We found a rare noncoding 12-base-pair (bp) deletion (del12) in intron 4 of ASGR1, which encodes a subunit of the asialoglycoprotein receptor, a lectin that plays a role in the homeostasis of circulating glycoproteins. The del12 mutation activates a cryptic splice site, leading to a frameshift mutation and a premature stop codon that renders a truncated protein prone to degradation. Heterozygous carriers of the mutation (1 in 120 persons in our study population) had a lower level of non-HDL cholesterol than noncarriers, a difference of 15.3 mg per deciliter (0.40 mmol per liter) (P=1.0×10(-16)), and a lower risk of coronary artery disease (by 34%; 95% confidence interval, 21 to 45; P=4.0×10(-6)). In a larger set of sequenced samples from Icelanders, we found another loss-of-function ASGR1 variant (p.W158X, carried by 1 in 1850 persons) that was also associated with lower levels of non-HDL cholesterol (P=1.8×10(-3)). CONCLUSIONS: ASGR1 haploinsufficiency was associated with reduced levels of non-HDL cholesterol and a reduced risk of coronary artery disease. (Funded by the National Institutes of Health and others.).


Subject(s)
Asialoglycoprotein Receptor/genetics , Cholesterol/blood , Coronary Artery Disease/genetics , Haploinsufficiency , Adult , Aged , Aged, 80 and over , Base Sequence , Female , Genetic Predisposition to Disease , Humans , Iceland , Kaplan-Meier Estimate , Male , Middle Aged , Molecular Sequence Data , Myocardial Infarction/genetics , Risk , Sequence Analysis, DNA , White People/genetics
20.
Nature ; 497(7450): 517-20, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23644456

ABSTRACT

Low bone mineral density (BMD) is used as a parameter of osteoporosis. Genome-wide association studies of BMD have hitherto focused on BMD as a quantitative trait, yielding common variants of small effects that contribute to the population diversity in BMD. Here we use BMD as a dichotomous trait, searching for variants that may have a direct effect on the risk of pathologically low BMD rather than on the regulation of BMD in the healthy population. Through whole-genome sequencing of Icelandic individuals, we found a rare nonsense mutation within the leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) gene (c.376C>T) that is strongly associated with low BMD, and with osteoporotic fractures. This mutation leads to termination of LGR4 at position 126 and fully disrupts its function. The c.376C>T mutation is also associated with electrolyte imbalance, late onset of menarche and reduced testosterone levels, as well as an increased risk of squamous cell carcinoma of the skin and biliary tract cancer. Interestingly, the phenotype of carriers of the c.376C>T mutation overlaps that of Lgr4 mutant mice.


Subject(s)
Biliary Tract Neoplasms/genetics , Bone Density/genetics , Carcinoma, Squamous Cell/genetics , Codon, Nonsense/genetics , Osteoporotic Fractures/genetics , Receptors, G-Protein-Coupled/genetics , Skin Neoplasms/genetics , Water-Electrolyte Imbalance/genetics , Animals , Australia , Denmark , Down-Regulation/genetics , Female , Heterozygote , Humans , Iceland , Male , Menarche/genetics , Mice , Mice, Knockout , Phenotype , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/metabolism , Testosterone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL