Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Biol Rep ; 50(10): 8271-8279, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37578578

ABSTRACT

BACKGROUND: A number of molecular marker systems have been developed to assess genetic diversity, carry out phylogenetic analysis, and diagnose and discriminate plant pathogenic fungi. The start codon targeted (SCoT) markers system is a novel approach used here to investigate intra and interspecific polymorphisms of phytopathogenic fungi. MATERIALS AND METHODS: This study assessed genetic variability between and within 96 isolates of ten fungal species associated with a variety of plant species using 36 SCoT primers. RESULTS: The six primers generated 331 distinct and reproducible banding patterns, of which 322 were polymorphic (97.28%), resulting in 53.67 polymorphic bands per primer. All primers produced informative amplification profiles that distinguished all fungal species. With a resolving power of 10.65, SCoT primer 12 showed the highest polymorphism among species, followed by primer 33 and primer 29. Polymorphic loci (PPL), Nei's diversity index (h), and Shannon index (I) percentages were 6.25, 0.018, and 0.028, respectively. UPGMA analysis separated all isolates based on morphological classification and revealed significant genetic variation among fungal isolates at the intraspecific level. PCoA analysis strongly supported fungal species discrimination and genetic variation. The other parameters of evaluation proved that SCoT markers are at least as effective as other DNA markers. CONCLUSIONS: SCoT markers were effective in identifying plant pathogenic fungi and were a powerful tool for estimating genetic variation and population structure of different fungi species.


Subject(s)
Genetic Variation , Polymorphism, Genetic , Phylogeny , Codon, Initiator/genetics , Polymorphism, Genetic/genetics , Fungi/genetics
2.
Arch Microbiol ; 204(12): 693, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36344755

ABSTRACT

Molecular DNA markers are valuable tools for analyzing genetic variation among yeast from different populations to reveal the genetically different autochthonous strains. In this study, we employed inter-primer binding site (iPBS) retrotransposon polymorphism to assess the genetic variation and population structure of 96 Saccharomyces cerevisiae isolates from four different regions in Turkey. The nine selected iPBS primers amplified 102 reproducible and scorable bands, of which 95.10% were polymorphic with an average of 10.78 polymorphic fragments per primer. The average polymorphism information content and the resolving power were 0.26-3.58, respectively. Analysis of molecular variance (AMOVA) revealed significant (P < 0.001) genetic differences within populations (88%) and between populations (12%). The unweighted pair group mean with arithmetic (UPGMA) dendrogram grouped 96 S. cerevisiae strains into two main clusters, where the highest probability of the data elucidating the population structure was obtained at ΔK = 2. There was not an obvious genetic discrimination of the populations according to geographical regions on UPGMA, supported by principal coordinate analysis. However, the individuals of the closer provinces in each population were more likely to group together or closely. The results indicate that iPBS polymorphism is a useful tool to reveal the genetically diverse autochthonous S. cerevisiae strains that may be important for the production of sourdough or baked goods.


Subject(s)
Retroelements , Saccharomyces cerevisiae , Binding Sites , Genetic Markers , Genetic Variation , Phylogeny , Retroelements/genetics , Saccharomyces cerevisiae/genetics , Turkey
3.
Mol Biol Rep ; 49(5): 3839-3847, 2022 May.
Article in English | MEDLINE | ID: mdl-35301653

ABSTRACT

BACKGROUND: Breeding strategies to improve modern varieties having high yield, high nutritional value and resistance to biotic and abiotic stress, etc. is very important to make up for the food deficiencies. Molecular studies as a tool in breeding programs for the characterization of germplasm have been performed with several DNA marker systems. MATERIALS AND METHODS: In the present study, the genetic diversity of 53 common bean landraces and 22 registered varieties from Turkey, and 12 genotypes from USDA was investigated using start codon targeted (SCoT) markers for the first time worldwide. The 8 primers having stronger and more polymorphic bands were used for PCR amplification. RESULTS: The mean polymorphic band of all primers was found as 13.13. The average of polymorphic information content and resolving power values was 0.34 and 7.55, respectively. Analysis of molecular variance (AMOVA) explored the existence of higher genetic diversity within populations accounting for 92% compared to among populations variations. According to cluster analysis (UPGMA) and genetic structure based on SCoT data, accessions were separated into Andean (PopA) and Mesoamerican PopB) gene pools. Moreover, accessions were mostly placed in the same groups/subgroups according to their geographical origin. CONCLUSIONS: A high level of genetic diversity was observed between the investigated accessions in this work. The findings will help to plant breeders to characterize common bean accessions.


Subject(s)
Phaseolus , Codon, Initiator/genetics , Genetic Markers/genetics , Genetic Variation/genetics , Phaseolus/genetics , Plant Breeding
4.
Curr Microbiol ; 80(1): 36, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520194

ABSTRACT

In this study, Clonostachys rosea strain ST1140, a naturally occurring endophyte in healthy roots of a pistachio tree, was identified morphologically and molecularly through DNA sequencing, and its endophytic ability and growth effect in/on three solanaceous plant species were tested. Three different organic substrates (bread wheat-grain, sawdust, and leonardite) were also investigated for their utility in cultivating and multiplying the strain. In-tray and pot experiments, the rates of seed germination and vegetative development of pepper, tomato, and eggplant inoculated with C. rosea at planting were compared to those of non-inoculated controls. In pot experiments, inoculating seedbeds with increasing doses of C. rosea strain ST1140 with wheat-grain substrate resulted in higher plant height values for all plant species, and the strain endophytically colonized the roots of all plant species. In-tray experiments revealed that ST1140 inoculation resulted in 2-4 days earlier and 10% higher germination rates for all plant species, as well as more vigorous and accelerated seedling growth (10-13 days earlier for seedlings at the 4-5 true leaf stage) on all inoculated plant species. Among three different organic substrates, wheat-grain was found to be the most effective for long-term cultivation and multiplication of the fungus, which could be of interest for its development as a commercial product. These results promised the strain ST1140's use as a biofertilizer in seedbeds with a wheat-grain substrate.


Subject(s)
Hypocreales , Triticum , Triticum/microbiology , Plant Roots/microbiology , Seedlings/microbiology , Edible Grain
5.
Food Microbiol ; 107: 104081, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35953177

ABSTRACT

Molecular markers are valuable tools for assessing the genetic variation in yeast. Here, we investigated the utility of SCoT markers for the genetic characterization of yeast strains at inter and intraspecies levels. A total of 345 endogenous yeast strains were isolated from 65 Type I sourdough samples collected from six different regions of Turkey. The seven SCoT primers produced 221 bands, of which 95.47% were polymorphic. Each primer could successfully differentiate species, supported by PIC and RP values. The ITS sequencing of isolates selected from the UPGMA dendrogram revealed that Saccharomyces cerevisiae predominated the microflora, followed by Kazachstania servazzii, K. humilis, Wickerhamomyces anomalus, Torulaspora delbrueckii, and Pichia kudriavzevii, respectively. The AMOVA revealed a high genetic variation between (49%) and within populations (51%) for S. cerevisiae. The high gene flow observed among S. cerevisiae populations suggests that it may have contributed to the geographical evolution of S. cerevisiae via the transportation of the sourdough samples. The different geographical origins were most likely to group separately on the UPGMA and PCoA. Saccharomyces cerevisiae strains from more distant populations generally displayed more significant genetic variation. SCoT markers can successfully be used alone or with the other existing DNA markers for DNA fingerprinting and analyzing the genetic variation between and within species.


Subject(s)
Genetic Variation , Saccharomyces cerevisiae , Codon, Initiator , Genetic Markers , Saccharomyces cerevisiae/genetics , Turkey
6.
Plant Dis ; 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35224989

ABSTRACT

Fusarium crown rot of wheat is an economically important disease that leads to significant yield and quality losses, especially in many arid and semi-arid wheat-growing areas worldwide. In June 2020, winter wheat (Triticum aestivum L.) plants exhibiting crown rot symptoms were identified in a commercial field located in the Tokbay location (43.033719°N, 74.325623°E), Chuy Province, Kyrgyzstan. The diseased plants were stunted and had brown discoloration on internodes of the stem bases and roots. Disease incidence was about 3%. A total of 10 plants were sampled at the ripening stage from the field to identify the causal agent. Symptomatic tissues were excised, surface disinfected with 1% NaOCl, rinsed three times with distilled water, and placed on one-fifth strength potato dextrose agar (PDA) followed by incubation at 23°C in the dark for 5 days. A total of 8 Fusarium isolates were recovered from tissues and purified by the hyphal tips method onto fresh PDA and Spezieller-Nährstoffarmer agar (SNA) plates (Leslie and Summerell 2006). Sequence analysis of the translation elongation factor 1α (TEF1) and the RNA polymerase II beta subunit (RPB2) genes were performed with primers EF1 and EF2 (O'Donnell et al. 1998), and 5f2 (Reeb et al. 2004) and 7cr (Liu et al. 1999), respectively. The sequences of three isolates showed 100% identities with the corresponding sequences of the strain NRRL 66652 of Fusarium algeriense Laraba & O'Donnell (TEF1: MF120515 and RPB2: MF120504), and the sequences of a representative isolate (KyrFa01) were deposited in GenBank (TEF1: OM135603 and RPB2: OM135604). On PDA, fungal colonies were initially yellowish-white but gradually turned yellowish-brown. Ellipsoidal microconidia produced in false heads on monophialides were usually aseptate (8.30 ± 1.17 µm, n = 50) and occasionally one-septate (21.89 ± 2.01 µm, n = 50). Sporodochial macroconidia were mostly 3-4 septate measuring 43.41 ± 2.83 µm (n = 50), slightly curved and formed generally on monophialides on SNA. No chlamydospores formation was detected after 15 days on SNA or PDA. Morphological characteristics described above were consistent with the morphology of F. algeriense, as reported by Laraba et al. (2017). To confirm pathogenicity, seeds of wheat cultivar Seri 82, Fusarium crown rot susceptible, were treated in 1% NaOCl for 2 min, rinsed twice, and placed in plates containing a piece of sterile filter paper saturated with water to induce germination for 3 days. Five pregerminated seeds were placed on the soil surface for each 9-cm-diameter pot, which was filled with a sterile potting mix containing peat, vermiculite, and soil (1:1:1 by v/v/v). A 1-cm-diameter mycelial plug taken from the margin of actively growing colonies (PDA) of the representative isolate KyrFa01 was contacted with each seed, and then seeds were covered with the same potting mix. The seeds in control pots were treated with sterile PDA plugs. The experiment was conducted in a growth chamber in a completely randomized design with five replicated pots at 23°C with a 12-h photoperiod. Disease assessment was made after 4 weeks of fungal inoculation. The isolate KyrFa01 induced discoloration on the crown and root tissues of inoculated plants similar to those observed in the field-grown plants, whereas no symptoms were observed on plants grown in the control pots. The pathogen was successfully reisolated from the symptomatic tissues, confirming Koch's postulates. To the best of our knowledge, this is the first report of crown rot caused by F. algeriense on wheat in Kyrgyzstan. Fusarium algeriense was firstly described within the Fusarium burgessii species complex by Laraba et al. (2017) as a crown rot pathogen of wheat in Algeria. The pathogen was secondly reported from wheat-growing areas in Azerbaijan (Özer et al. 2020a) and thirdly from Kyrgyzstan in this report. Özer et al. (2020b) confirmed the coexistence of this pathogen with other Fusarium species. The result warrants the need to further investigate the potential of this species in the Fusarium crown rot complex of wheat.

7.
Plant Dis ; 106(3): 854-863, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34661448

ABSTRACT

During the period of June to October in 2018, a widespread decline was observed on kiwifruit vines in the vineyards located in the Altinordu, Fatsa, and Persembe districts of Ordu province in Turkey. The symptoms were associated with reddish-brown rots expanding from the root to the collar with sparse off-color foliage. Based on the percentage of the total infected samples across 18 vineyards, the most common oomycete species were Globisporangium intermedium (37.1%), Phytopythium vexans (34.3%), Globisporangium sylvaticum (14.3%), Globisporangium heterothallicum (11.4%), and Pythium dissotocum (2.9%). The morphological identification of isolates was confirmed based on partial DNA sequences containing the nuclear rDNA internal transcribed spacer region gene and the mitochondrial cytochrome c oxidase subunit II gene. The optimum growth temperature and the optimum pH values of the five species ranged from 22.98 to 28.25°C and 5.67 to 8.51, respectively. Pathogenicity tests on the seedlings of kiwifruit cv. Hayward revealed significant differences in virulence among isolates. Phytopythium vexans and Globisporangium sylvaticum isolates caused severe root and collar rot resulting in seedling death, while Globisporangium heterothallicum and Globisporangium intermedium isolates had relatively lower virulence. All Globisporangium spp. and Phytopythium vexans isolates significantly decreased plant growth parameters (plant height, shoot and root dry weights, and root length); however, Pythium dissotocum caused very mild symptoms and did not affect these parameters of growth. To our knowledge, this is the first study reporting Globisporangium sylvaticum, Globisporangium heterothallicum, and Globisporangium intermedium causing root and collar rot on kiwifruit not only in Turkey but also in the world.


Subject(s)
Actinidia , Pythium , Plant Diseases , Turkey , Virulence
8.
ScientificWorldJournal ; 2022: 3602996, 2022.
Article in English | MEDLINE | ID: mdl-36065336

ABSTRACT

In Kazakhstan, barley (Hordeum vulgare L.) is the second most important cereal crop after wheat, with an annual production of approximately 1.9 million tons. The study aimed to characterize Bipolaris sorokiniana isolates obtained from barley fields surveyed. A total of 21 diseased leaves showing spot blotch symptoms were collected from experimental plots located close to the Kazakh Research Institute of Agriculture and Crop Production, where the spring barley Arna cultivar was planted in June 2020. The overall strategy for control of spring barley blotch in the Almaty region of Kazakhstan should include the determination of the aggressiveness of the pathogen isolates to better understand the biology of the diseases and ultimately proper control strategy. Pathogenicity of B. sorokiniana isolates was made on barley seedlings in vitro. Inoculated seedlings showed clear symptoms of B. sorokiniana, and therefore, Koch's postulates were fulfilled by reisolating the pathogen from artificially inoculated seedlings and identifying it based on standard morphology criteria. Further investigation is needed to understand the impact of B. sorokiniana on barley production in Kazakhstan.


Subject(s)
Ascomycota , Hordeum , Ascomycota/genetics , Bipolaris , Hordeum/genetics , Kazakhstan , Plant Diseases/prevention & control
9.
Plant Dis ; 2021 May 25.
Article in English | MEDLINE | ID: mdl-34032487

ABSTRACT

In June 2019, approximately 20 tillers of wheat (Triticum aestivum L.) were sampled at the ripening stage (Feekes scale 11) from four different fields in Almaty, Kazakhstan. Brown lesions (3-5 mm in length) were present on the roots of sampled plants, with 20% incidence. To determine the causal agent, diseased roots were surface disinfected in sodium hypochlorite solution (1%) for 3 min, rinsed triple with sterile distilled water, air-dried in a laminar flow hood, and plated onto one-fifth strength potato dextrose agar (PDA) supplemented with 50 ppm chloramphenicol. After three days, the hyphal fragments that developed from the sections were transferred to fresh PDA and incubated at 23°C with 12-h photoperiod for 7 days to obtain pure cultures. Brown pigmented fungal colonies with a constriction at the base of hyphal branches, septa near the branching point, and right-angled branching resembling Rhizoctonia solani were observed. The identification anastomosis group (AG) of a representative isolate for each field was conducted by sequencing the internal transcribed spacer (ITS) region of rDNA with the universal primers ITS4 and ITS5 (White et al. 1990). The resulting sequences of 693 bp length were deposited in GenBank (accession nos. MW898143:MW898146). These sequences were 100% identical to the isolate 8Rs of R. solani AG2-1 (accession no. AF354063). To confirm the pathogenicity of the four isolates, the colonized wheat kernels method described by Demirci (1998) was used to inoculate a sterile potting mix containing peat, vermiculite, and soil (1:1:1 by v/v/v) into which wheat (cv. Seri) was planted. Control pots were inoculated with sterile wheat kernels using the same procedure. Wheat plants were left to grow for four weeks under controlled environmental conditions with a 23°C temperature regime. During the period that the plants remained in the glasshouse, the typical light regime was 16 h. Brown lesions were observed on the roots of plants in the inoculated pots whereas no symptoms were observed on plants grown in the control pots. R. solani was consistently reisolated from symptomatic plants, thereby confirming Koch's postulates. To our knowledge, this is the first report of R. solani AG2-1 on roots of wheat in Kazakhstan. R. solani AG2-1 isolates have been previously reported to be a weak pathogen to wheat (Roberts and Sivasithamparam 1986; Sturrock et al. 2015; Jaaffar et al. 2016; Özer et al. 2019). We suggest further studies are required to characterize the impact of R. solani AG2-1 in wheat. Considering crop rotation, the selection of non-host crops to this AG group is important to pathogen management, by reducing the amount of inoculum in the soil.

10.
Plant Dis ; 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33779261

ABSTRACT

Fusarium crown rot, caused by several species within the genus, is a major constraint that results in significant losses in wheat production worldwide. In June 2019, diseased wheat plants with typical symptoms of crown rot, including discoloration on the first two or three internodes of the stem just above the soil line and stunted, dry rotted, and discolored roots were collected in several bread wheat fields during the maturity stage in Almaty, East Kazakhstan, and Karaganda Regions of Kazakhstan. For each field, approximately twenty tillers were randomly sampled. Symptomatic tissues were surface sterilized in 1% NaClO for 2 min, rinsed with sterile distilled water three times, air-dried in a laminar flow hood, and then transferred to Petri dishes containing one-fifth strength potato dextrose agar (PDA). After incubating in the dark at 23°C for 5 days, 79 single-spore isolates showing cultural and microscopic characteristics of Fusarium were obtained on PDA and Spezieller-Nährstoffarmer agar (SNA). Colonies were initially white but later produced a beige to pink diffusible pigment in PDA. Microconidia that formed on aerial monophialides were hyaline, 0 to 1 septum, oval- to kidney-shaped, and measured 4.3 to 10.3 × 1.9 to 3.4 µm (average 7.8 × 2.6 µm), whilst macroconidia were straight to slightly curved, 3 to 5 septate, and measured 18.7 to 38.8 × 2.9 to 6.6 µm (average 29.9 × 4.7 µm), with foot-shaped basal cells on SNA. Chlamydospores were present on PDA. Sequence analysis based on portions of translation elongation factor 1α (TEF1) and the nuclear ribosomal internal transcribed spacer region (ITS rDNA) loci with primers EF1/EF2 (O'Donnell et al. 1998) and ITS1/ITS4 (White et al. 1990) identified 29 of the 79 isolates as Fusarium redolens Wollenw. The sequences of the five representative isolates with 99.85% of similarity to those of F. redolens strains available in GenBank e.g., ITS (MT435063) and TEF1 (GU250584). The TEF1 (accession nos. MW403914-MW403918) and ITS rDNA (accession nos. MW397138-MW397142) sequences of the isolates were deposited in GenBank. The morphological features are consistent with the described features of F. redolens (Leslie and Summerell 2006). To confirm pathogenicity of the five isolates, five pre-germinated seeds of wheat cultivar Seri 82 were placed in a 9-cm-diameter pot filled with a sterile potting mix containing equal volumes of peat, vermiculite, and soil. An approximately 1-cm-diameter 7-day-old mycelial plug of each isolate was individually placed in contact with the seeds. Seeds were covered with the same potting mix, and then the pots were maintained for four weeks in a growth chamber at 23°C with a 12-h photoperiod. The experiment was conducted twice with three replicate 15-cm pots with 5 plants per pot. Controls were inoculated with sterile agar plugs using the same procedure. After four weeks, all the inoculated plants showed stunted growth with brown discoloration in most parts of the crown and roots, whereas no symptoms were observed in the control plants. The mean severity of the disease for each isolate was between 2.1 and 2.7 according to the scale of 1 to 5 described by Gebremariam et al. (2015). The pathogen was reisolated from crowns of diseased plants, but not from asymptomatic control tissues, and identified morphologically based on the methods described above, fulfilling Koch's postulates. Although several morphological features are shared by F. oxysporum and F. redolens, Baayen et al. (2001) showed that these species could be easily distinguished using molecular data. The pathogen was previously reported as F. redolens associated with crown rot of wheat in Turkey (Gebremariam et al. 2015) and Saskatchewan, Canada (Taheri et al. 2011). The presence of F. redolens causing crown rot is confirmed in the six wheat fields surveyed in Kazakhstan, for the first time. This pathogen may pose a risk for wheat production, and further studies needed to determine the impact on the crop in Kazakhstan.

11.
Plant Dis ; 105(9): 2299-2305, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33754850

ABSTRACT

Kazakhstan is one of the biggest wheat producers, however, its wheat production is far below the average international wheat production standard due to biotic and abiotic stressors. Plant-parasitic nematodes are devastating for cereal production systems worldwide. A comprehensive survey was conducted in 2019 to identify plant-parasitic nematodes associated with wheat in different locations of central, eastern, and southeastern Kazakhstan. The results revealed 33 root-lesion and 27 cyst nematode populations from the 77 localities sampled. These two genera occurred in separate or in mixed populations. The root-lesion populations were identified as Pratylenchus neglectus and P. thornei while all cyst nematodes were identified as Heterodera filipjevi. The identification of nematodes was firstly performed based on morphological and morphometric features and confirmed by BLAST and phylogenetic analyses based on the internal transcribed spacer and the D2-D3 expansion located in the 28S gene of ribosomal DNA for CCN and RLN populations, respectively. Pratylenchus neglectus and P. thornei populations from Kazakhstan showed a high similarity with the American, European, and Asian populations. Heterodera filipjevi populations formed a well-supported cluster with the corresponding populations from different countries and showed a slightly intraspecific polymorphism. Kazakhstan populations of H. filipjevi may have multiple introductions in Kazakhstan due to the divergence among them. The results of this study are of great importance for breeding programs and will enable awareness for extension advisors to develop measures to control these nematodes in cereal cropping areas in Kazakhstan.


Subject(s)
Triticum , Tylenchoidea , Animals , Edible Grain , Kazakhstan , Phylogeny , Plant Breeding
12.
Plant Dis ; 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33656364

ABSTRACT

Triticale (×Triticosecale Wittmack) is obtained from wheat × rye crossing. It is positioned between wheat and rye in terms of resistance to soilborne pathogens including Gaeumannomyces graminis var. tritici, Fusarium culmorum, F. avenaceum, and Bipolaris sorokiniana (Arseniuk and Góral 2015). In 2019, seven triticale fields were surveyed in Almaty Province, Kazakhstan to examine soil-borne fungal pathogens. A total of 28 symptomatic plants with stunting, rot or discolored root were collected to identify causal agents. The overall disease incidence was approximately 8 to 10% in the fields. Fungi were isolated from 3-5 mm pieces excised from symptomatic tissues. The pieces were exposed to surface disinfection in 1% sodium hypochlorite solution for 2 min, rinsed three times with sterile distilled water, blotted dry, and plated on 1/5 strength potato dextrose agar (PDA) amended with 0.01% streptomycin. Plates were left in the dark at 23°C for 7 days. A total of 34 fungal colonies were isolated of which nineteen isolates, originally from six fields showed the cultural characteristics of B. sorokiniana. This species was previously reported to cause common root rot on triticale in Kazakhstan (Özer et al. 2020). Ten isolates from four fields produced pale orange and cottony mycelium with red pigmentation on the agar, which is typical of Fusarium-like growth. The remaining isolates (n=5) from two fields produced salmon-colored and scarce aerial mycelium with no soluble pigmentation, similar to Microdochium spp. Fusarium isolates produced thick-walled and curved macroconidia with 3-4 septa (n=50, 25.7 to 37.6 × 4.1 to 7.3 µm in size) and notched basal cell on PDA, but microconidia were absent, which matches the description of F. culmorum (Wm.G. Sm.) Sacc. (Leslie and Summerell 2006). Microdochium isolates produced swollen, brown, and thick-walled chlamydospores and hyaline, one-celled, and thin-walled conidia (n=50, 5.4 to 9.3 × 1.5 to 3.0 µm in size) formed on ampullate and cylindrical conidiogenous cells on oatmeal agar (OA). These morphological features are consistent with previous observations for Microdochium bolleyi (R. Sprague) de Hoog & Herm.-Nijh. (Hong et al. 2008). To confirm morphological preliminary identifications, the portion of the translation elongation factor 1-alpha (EF1-α) gene was amplified with EF1/EF2 primers (O'Donnell et al. 1998) for representative Fusarium isolates (n=4) for each field. Additionally, the internal transcribed spacer (ITS) of ribosomal DNA was amplified with ITS1/ITS4 primers (White et al. 1990) for representative Microdochium isolates (n=2) for each field. BLASTn queries against NCBI GenBank revealed that the EF1-α sequences of Fusarium isolates (MW311081-MW311084) shared 100% identity with F. culmorum strain CBS 110262 (KT008433). The ITS sequences of M. bolleyi isolates (MW301448-MW301449) matched that of M. bolleyi strain CBS 137.64 (AM502264) with 100% sequence similarity. Pathogenicity test was conducted on pregerminated seeds of triticale cv. Balausa. A plastic pot (17 cm height, 9 cm in diam) was filled with a sterile mixture of vermiculite, peat, and soil (1:1:1, v/v/v). Mycelial plugs (1 cm in diam) were cut from the margin of a growing culture of representative isolates (Kaz_Fus123 and Kaz_Mb01) and placed onto the mixture in the pot. A sterile agar plug was employed as a control treatment. One pregerminated seed was put on the plug and covered with the mixture. The pots were transferred to a growth chamber set at 23 ± 2°C and a photoperiod of 14 hours. The experiment was performed twice using 5 replication pots per isolate. Four weeks after inoculation, discoloration of the crown was observed on all the inoculated roots, whereas no symptoms were observed on the control plants. Koch's postulates were fulfilled by reisolating and identifying the pathogen based on the morphology described above. This is the first report of M. bolleyi and F. culmorum causing root rot on triticale in Kazakhstan. Although B. sorokiniana is the most primary pathogen that may limit yield in the production of triticale in Kazakhstan, F. culmorum and M. bolleyi have been found to be less frequent and less aggressive pathogens, respectively. Further studies are needed to better understand the potential distribution and impact of these pathogens on triticale.

13.
Plant Dis ; 104(10): 2642-2648, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32791883

ABSTRACT

Decline symptoms associated with lethal stem and branch canker stain along with root and collar rots were observed on 5- to 7-year-old roadside oriental plane trees (Platanus orientalis) in Diyarbakir, Turkey. Above-ground symptoms included leaf necrosis, leaf curling, extensive bluish or blackish staining of shoots, branches, stem bark, and wood surfaces, as well as stem cankers and exfoliation of branch bark scales. A general decline of the trees was distinctly visible from a distance. A Phytophthora/Pythium-like oomycete species with globose to ovoid, often papillate and internally proliferating sporangia was consistently isolated from the fine and coarse roots and stained branch parts and shoots. The pathogen was identified as Phytopythium litorale based on several morphological features. Partial DNA sequences of three loci, including nuclear rDNA internal transcribed spacer (ITS) and the large ribosomal subunit (LSU), and mitochondrial cytochrome c oxidase subunit II (coxII) confirmed the morphological identification. All P. litorale isolates were homothallic, developing gametangia, ornamented oogonia with elongate to lobate antheridia. Pathogenicity of P. litorale was tested by inoculation on excised shoots and by root inoculation on seedlings. P. litorale produced large lesions and blights on shoots in just 5 days and killed 100% of the seedlings in a month. This paper presents the first confirmed report of P. litorale as an important pathogen on a plant species causing branch and stem cankers, and root and collar rot, in and on P. orientalis, resulting in a rapid decline of trees and suggesting a threat to plane.


Subject(s)
Coloring Agents , Plant Diseases , DNA, Ribosomal Spacer , Phylogeny , Turkey
14.
Plant Dis ; 104(8): 2149-2157, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32452752

ABSTRACT

A comprehensive survey was performed to assess fungal populations associated with crown and root rot of wheat throughout the main wheat-growing areas of Azerbaijan. Samples were taken from 76 fields; 630 fungal strains were isolated, identified, and evaluated for pathogenicity. The identification was conducted with morphological and molecular tools such as species-specific PCR and DNA sequencing of the internal transcribed spacer (ITS) and translation elongation factor 1-α (EF1-α) loci. The fungus found in the greatest number of fields (44) was Fusarium culmorum with 192 isolates, followed by F. acuminatum. Other Fusarium spp. isolates were identified: F. equiseti, F. pseudograminearum, F. graminearum, F. incarnatum, F. avenaceum, F. hostae, F. oxysporum, F. proliferatum, F. algeriense, and F. brachygibbosum. Bipolaris sorokiniana, Curvularia spicifera, Exserohilum pedicellatum, Nigrospora oryzae, and Rhizoctonia spp. isolates were also identified, associated with underground parts of wheat. Phylogenetic analyses based on ITS and EF1-α sequences of the isolates showed that the isolates belonging to the same species were clearly separated in the dendrogram. Pathogenicity assays revealed that F. culmorum, F. pseudograminearum, and F. graminearum were most aggressive; F. avenaceum, F. hostae, F. algeriense, B. sorokiniana, C. spicifera, and R. solani isolates were moderately aggressive; C. inaequalis, E. pedicellatum, and N. oryzae were weakly aggressive; and others were nonpathogenic. The result of this study exhibited the existence of a wide range of species associated with crown and root rot of wheat in Azerbaijan. Additionally, this is the first report of F. hostae, F. algeriense, C. spicifera, C. inaequalis, and N. oryzae as pathogens on wheat in Azerbaijan. Azerbaijan is the second country after Algeria in which F. algeriense was detected.


Subject(s)
Plant Diseases , Triticum , Algeria , Azerbaijan , Phylogeny , Virulence
15.
Curr Issues Mol Biol ; 26: 55-64, 2018.
Article in English | MEDLINE | ID: mdl-28879856

ABSTRACT

Global crop production is highly threatened due to pathogen invasion. The huge quantity of pesticides application, although harmful to the environment and human health, is carried out to prevent the crop losses worldwide, every year. Therefore, understanding the molecular mechanisms of pathogenicity and plant resistance against pathogen is important. The resistance against pathogens is regulated by three important phytohormones viz. salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Here we review possible role of CRISPR technology to understand the plant pathogenicity by mutating genes responsible for pathogen invasion or up-regulating the phytohormones genes or resistant genes. Thus hormone biosynthesis genes, receptor and feeding genes of pathogens could be important targets for modifications using CRISPR/Cas9 following multiplexing tool box strategy in order to edit multiple genes simultaneously to produce super plants. Here we put forward our idea thatthe genes would be either mutated in case of plant receptor protein targets of pathogens or up-regulation of resistant genes or hormone biosynthesis genes will be better choice for resistance against pathogens.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Crops, Agricultural/genetics , Disease Resistance/genetics , Endonucleases/genetics , Gene Editing/methods , Genome, Plant , Animals , Bacteria/genetics , Bacteria/metabolism , Bacteria/pathogenicity , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Crops, Agricultural/immunology , Crops, Agricultural/microbiology , Crops, Agricultural/parasitology , Cyclopentanes/immunology , Cyclopentanes/metabolism , Endonucleases/metabolism , Ethylenes/biosynthesis , Ethylenes/immunology , Fungi/genetics , Fungi/metabolism , Fungi/pathogenicity , Mutation , Nematoda/genetics , Nematoda/metabolism , Nematoda/pathogenicity , Oxylipins/immunology , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/genetics , Plant Growth Regulators/immunology , Plant Proteins/genetics , Plant Proteins/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism
16.
Int J Food Microbiol ; 423: 110845, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39079449

ABSTRACT

The primary objective of this study was to characterize lactic acid bacteria (LAB) strains derived from sourdough for possible utilization as functional starters to produce sourdough and various cereal-based fermented foods. A total of 350 autochthonous LAB strains were isolated from 65 Type I sourdough samples and characterized using six random amplified polymorphic DNA (RAPD) primers at intra- and interspecific levels. Species identification of selected strains representing distinct clusters from RAPD analysis was performed based on the 16S rRNA region. The LAB strains were identified as Companilactobacillus crustorum (n = 135), Levilactobacillus brevis (n = 125), Latilactobacillus curvatus (n = 40), Companilactobacillus paralimentarius (n = 32), and Lactiplantibacillus plantarum (n = 18). A total of 66 LAB strains were selected for technological characterization along with two commercial strains. The characterization involved acidity development, EPS production potential, leavening activity, and growth abilities under harsh conditions. Principle component analysis (PCA) identified 2 Lp. plantarum and 14 Lev. brevis strains as the most relevant technologically. Among them, Lp. plantarum L35.1 and Lev. brevis L37.1 were resistant to tetracycline. Evaluation of probiotic characteristics (survival in pH 2.5 and bile presence, auto aggregation capacity, hydrophobic activity, antioxidant activity, antimicrobial activity) by PCA identified four strains with relevance to Lactobacillus rhamnosus GG (LGG), which were further selected for in vitro digestion assays. Lactiplantibacillus plantarum L7.8, Lev. brevis L55.1, and L62.2 demonstrated similar viability indices to LGG, along with increased auto aggregation capacity and antioxidant activity. These strains are promising as candidate starters for producing sourdough and sourdough-related fermented food products.


Subject(s)
Bread , Fermentation , Food Microbiology , Random Amplified Polymorphic DNA Technique , Bread/microbiology , RNA, Ribosomal, 16S/genetics , Fermented Foods/microbiology , Lactobacillales/genetics , Lactobacillales/isolation & purification , Lactobacillales/classification , Lactobacillales/metabolism , Phylogeny , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactobacillus/classification , Lactobacillus/metabolism
17.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205177

ABSTRACT

Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.


Subject(s)
Ascomycota , Benzothiazoles , Diamines , Fungal Viruses , Nucleic Acid Amplification Techniques , Organic Chemicals , Plant Diseases , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Ascomycota/genetics , Ascomycota/virology , Ascomycota/isolation & purification , Plant Diseases/virology , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , Organic Chemicals/metabolism , Quinolines , Molecular Diagnostic Techniques/methods , Colorimetry/methods
18.
J Fungi (Basel) ; 9(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998855

ABSTRACT

Neoscytalidium dimidiatum, a plant- and human-associated fungus, has emerged as a substantial global ecological and agricultural threat aggravated by global warming. It inflicts various diseases, including canker, blight, dieback, leaf spot, root rot, and fruit rot, across a wide spectrum of fruit trees, field crops, shrubs, and arboreal species, with a host range spanning 46 plant families, 84 genera, and 126 species, primarily affecting eudicot angiosperms. Six genera are asymptomatic hosts. Neoscytalidium dimidiatum exhibits worldwide distribution, with the highest prevalence observed in Asia and North America, notably in Iran, Turkey, and California. Rising disease prevalence and severity, aggravated by climate change, particularly impact tropical arid places across 37 countries spanning all 7 continents. This comprehensive review encapsulates recent advancements in the understanding of N. dimidiatum, encompassing alterations in its taxonomic classification, host range, symptoms, geographic distribution, epidemiology, virulence, and strategies for effective management. This study also concentrates on comprehending the taxonomic relationships and intraspecific variations within N. dimidiatum, with a particular emphasis on N. oculus and N. hylocereum, proposing to consider these two species as synonymous with N. dimidiatum. Furthermore, this review identifies prospective research directions aimed at augmenting our fundamental understanding of host-N. dimidiatum interaction.

19.
Plants (Basel) ; 12(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37765382

ABSTRACT

MTP/CDF carriers, called metal ion transport proteins, act as substrates for the transmission of micronutrients such as iron (Fe), zinc (Zn), and manganese (Mn) to membrane carriers in plants. In this study, genome-wide analysis of the MTP gene family in the common bean genome, expression analysis of the PvMTP4, PvMTP5, and PvMTP12 genes after Fe and Zn treatments, and the effects of Fe and Zn applications on iron and zinc content were investigated. This study used common bean genotypes assumed to have high or low Fe and Zn accumulation ability. PvMTP genes were defined as containing conserved catalytic domains with molecular weights and protein lengths ranging from 41.35 to 91.05 kDa and from 369 to 813 amino acids (aa), respectively. As a result of the phylogenetic analysis, three main clusters containing seven subgroups were formed. In this study, the first characterization of the MTP gene family of beans was performed, and the responses of three different PvMTP genes in the Zn-CDF group to Fe and Zn applications were revealed. The obtained findings are thought to constitute pioneering resources for future research on common bean biofortification studies, plant breeding related to Fe and Zn, and the functional characterization of the MTP gene family.

20.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675945

ABSTRACT

Fungal species associated with crown and root rot diseases in wheat have been extensively studied in many parts of the world. However, no reports on the relative importance and distribution of pathogens associated with wheat crown and root rot in Kyrgyzstan have been published. Hence, fungal species associated with wheat crown/root rot were surveyed in three main wheat production regions in northern Kyrgyzstan. Fungal species were isolated on 1/5 strength potato-dextrose agar amended with streptomycin (0.1 g/L) and chloramphenicol (0.05 g/L). A total of 598 fungal isolates from symptomatic tissues were identified using morphological features of the cultures and conidia, as well as sequence analysis of the nuclear ribosomal internal transcribed spacer (ITS) region, the translation elongation factor 1α (TEF1), and the RNA polymerase II beta subunit (RPB2) genes. The percentage of fields from which each fungus was isolated and their relative percentage isolation levels were determined. Bipolaris sorokiniana, the causal agent of common root rot, was the most prevalent pathogenic species isolated, being isolated from 86.67% of the fields surveyed at a frequency of isolation of 40.64%. Fusarium spp. accounted for 53.01% of all isolates and consisted of 12 different species. The most common Fusarium species identified was Fusarium acuminatum, which was isolated from 70% of the sites surveyed with an isolation frequency of 21.57%, followed by Fusarium culmorum, Fusarium nygamai, Fusarium oxysporum, and Fusarium equiseti, all of which had a field incidence of more than 23%. Inoculation tests with 44 isolates representing 17 species on the susceptible Triticum aestivum cv. Seri 82 revealed that Fusarium pseudograminearum and F. culmorum isolates were equally the most virulent pathogens. The widespread distribution of moderately virulent B. sorokiniana appears to be a serious threat to wheat culture, limiting yield and quality. With the exception of F. culmorum, the remaining Fusarium species did not pose a significant threat to wheat production in the surveyed areas because common species, such as F. acuminatum, F. nygamai, F. oxysporum, and F. equiseti, were non-pathogenic but infrequent species, such as Fusarium redolens, Fusarium algeriense, and F. pseudograminearum, were highly or moderately virulent. Curvularia inaequalis, which was found in three different fields, was mildly virulent. The remaining Fusarium species, Fusarium solani, Fusarium proliferatum, Fusarium burgessii, and Fusarium tricinctum, as well as Microdochium bolleyi, Microdochium nivale, and Macrophomina phaseolina, were non-pathogenic and considered to be secondary colonizers. The implications of these findings are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL