Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nucleic Acids Res ; 51(5): 2011-2032, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36617428

ABSTRACT

Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.


The multi-subunit Elongator complex mediates the addition of a carboxymethyl group to wobble uridines in eukaryotic tRNAs. This tRNA modification is crucial to preserve the integrity of cellular proteomes and to protects us against severe neurodegenerative diseases. Elongator is organized in two distinct modules (i) the larger Elp123 subcomplex that binds and modifies the suitable tRNA substrate and (ii) the smaller Elp456 subcomplex that assists the release of the modified tRNA. The presented cryo-EM structures of Elongator show that the assemblies are very dynamic and undergo conformational rearrangements at consecutive steps of the process. Last but not least, the study provides a detailed reaction scheme and shows that the architecture of Elongator is highly conserved from yeast to mammals.


Subject(s)
Multiprotein Complexes , Peptide Chain Elongation, Translational , RNA-Binding Proteins , Saccharomyces cerevisiae , Animals , Humans , Mice , Cryoelectron Microscopy , Histone Acetyltransferases/metabolism , Protein Binding , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure
2.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33152999

ABSTRACT

Elp3, the catalytic subunit of the eukaryotic Elongator complex, is a lysine acetyltransferase that acetylates the C5 position of wobble-base uridines (U34) in transfer RNAs (tRNAs). This Elongator-dependent RNA acetylation of anticodon bases affects the ribosomal translation elongation rates and directly links acetyl-CoA metabolism to both protein synthesis rates and the proteome integrity. Of note, several human diseases, including various cancers and neurodegenerative disorders, correlate with the dysregulation of Elongator's tRNA modification activity. In this review, we focus on recent findings regarding the structure of Elp3 and the role of acetyl-CoA during its unique modification reaction.


Subject(s)
Histone Acetyltransferases/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , Acetylation , Animals , Base Sequence , Binding Sites , Histone Acetyltransferases/physiology , Humans , Lysine/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Peptide Chain Elongation, Translational/genetics , Uridine/metabolism
3.
Nat Commun ; 15(1): 4094, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750017

ABSTRACT

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Subject(s)
Cryoelectron Microscopy , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Uridine/chemistry , Uridine/metabolism , Mutation , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/chemistry , Models, Molecular , Acetylation , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Protein Binding
4.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35698786

ABSTRACT

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Subject(s)
RNA, Transfer , Saccharomyces cerevisiae Proteins , Animals , Mice , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
5.
Nat Commun ; 10(1): 625, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733442

ABSTRACT

The Elongator complex catalyzes posttranscriptional tRNA modifications by attaching carboxy-methyl (cm5) moieties to uridine bases located in the wobble position. The catalytic subunit Elp3 is highly conserved and harbors two individual subdomains, a radical S-adenosyl methionine (rSAM) and a lysine acetyltransferase (KAT) domain. The details of its modification reaction cycle and particularly the substrate specificity of its KAT domain remain elusive. Here, we present the co-crystal structure of bacterial Elp3 (DmcElp3) bound to an acetyl-CoA analog and compare it to the structure of a monomeric archaeal Elp3 from Methanocaldococcus infernus (MinElp3). Furthermore, we identify crucial active site residues, confirm the importance of the extended N-terminus for substrate recognition and uncover the specific induction of acetyl-CoA hydrolysis by different tRNA species. In summary, our results establish the clinically relevant Elongator subunit as a non-canonical acetyltransferase and genuine tRNA modification enzyme.


Subject(s)
Histone Acetyltransferases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Catalytic Domain , Histone Acetyltransferases/chemistry , Methanocaldococcus/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity
6.
Sci Adv ; 5(7): eaaw2326, 2019 07.
Article in English | MEDLINE | ID: mdl-31309145

ABSTRACT

The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.


Subject(s)
Multiprotein Complexes/metabolism , Peptide Elongation Factors/metabolism , RNA, Transfer/genetics , Anticodon/chemistry , Binding Sites , Catalytic Domain , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Models, Molecular , Molecular Conformation , Multiprotein Complexes/chemistry , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Protein Binding , RNA, Transfer/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL