Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
Add more filters

Publication year range
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Article in English | MEDLINE | ID: mdl-38191935

ABSTRACT

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Subject(s)
Neuroimaging , Software , Neuroimaging/methods , Humans , User-Computer Interface , Reproducibility of Results , Brain/diagnostic imaging
2.
New Media Soc ; 26(5): 2804-2828, 2024 May.
Article in English | MEDLINE | ID: mdl-38706952

ABSTRACT

Having a disability, in particular, an intellectual disability, is associated with Internet non-use. This article explores how people with intellectual disabilities used the Internet across the United Kingdom during the COVID-19 pandemic. In April to May 2021, 571 adults with intellectual disabilities were interviewed. Participants most commonly used the Internet for being with family and friends, social media or doing online activities with other people. People who lived with family were the most likely to use social media; people who lived with other people with intellectual disabilities were the least likely. People who self-reported as not lonely were more likely to use the Internet for online activities with others and play video games with others. Social connections were identified as the best thing about the Internet. Many participants chose not to identify a worst thing about Internet use, while others reported issues with technology, online harm and threats to well-being.

3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834912

ABSTRACT

MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Mesothelioma/pathology , Molecular Dynamics Simulation , Secretome , Pleural Neoplasms/pathology , Lung Neoplasms/genetics , Tumor Microenvironment
4.
Biol Reprod ; 107(2): 514-528, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35357467

ABSTRACT

Long-chain polyunsaturated fatty acids (LCPUFAs) are critical for fetal brain development. Infants born to preeclamptic mothers or those born growth restricted due to placental insufficiency have reduced LCPUFA and are at higher risk for developing neurodevelopmental disorders. Since plasma levels of testosterone (T) and fatty acid-binding protein 4 (FABP4) are elevated in preeclampsia, we hypothesized that elevated T induces the expression of FABP4 in the placenta leading to compromised transplacental transport of LCPUFAs. Increased maternal T in pregnant rats significantly decreased n-3 and n-6 LCPUFA levels in maternal and fetal circulation, but increased their placental accumulation. Dietary LCPUFAs supplementation in T dams increased LCPUFA levels in the maternal circulation and further augmented placental storage, while failing to increase fetal levels. The placenta in T dams exhibited increased FABP4 mRNA and protein levels. In vitro, T dose-dependently upregulated FABP4 transcription in trophoblasts. Testosterone stimulated androgen receptor (AR) recruitment to the androgen response element and trans-activated FABP4 promoter activity, both of which were abolished by AR antagonist. Testosterone in pregnant rats and cultured trophoblasts significantly reduced transplacental transport of C14-docosahexaenoic acid (DHA) and increased C14-DHA accumulation in the placenta. Importantly, FABP4 overexpression by itself in pregnant rats and trophoblasts increased transplacental transport of C14-DHA with no significant placental accumulation. Testosterone exposure, in contrast, inhibited this FABP4-mediated effect by promoting C14-DHA placental accumulation.


Subject(s)
Hyperandrogenism , Pre-Eclampsia , Animals , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Female , Hyperandrogenism/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , Rats , Testosterone/pharmacology
5.
Reprod Biol Endocrinol ; 20(1): 12, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012577

ABSTRACT

As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits present in animal models in which tissue differentiation is completed during fetal life as in humans to support the evolutionary concept that PCOS has common ancestral and developmental origins.


Subject(s)
Adaptation, Physiological/physiology , Energy Metabolism/physiology , Polycystic Ovary Syndrome/etiology , Adult , Animals , Female , Humans , Hyperandrogenism/etiology , Hyperandrogenism/metabolism , Insulin Resistance/physiology , Menstruation Disturbances/etiology , Menstruation Disturbances/metabolism , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Polycystic Ovary Syndrome/metabolism
6.
Epilepsia ; 63(11): 2745-2753, 2022 11.
Article in English | MEDLINE | ID: mdl-35841260

ABSTRACT

Magnetoencephalography with optically pumped magnometers (OPM-MEG) is an emerging and novel, cost-effective wearable system that can simultaneously record neuronal activity with high temporal resolution ("when" neuronal activity occurs) and spatial resolution ("where" neuronal activity occurs). This paper will first outline recent methodological advances in OPM-MEG compared to conventional superconducting quantum interference device (SQUID)-MEG before discussing how OPM-MEG can become a valuable and noninvasive clinical support tool in epilepsy surgery evaluation. Although OPM-MEG and SQUID-MEG share similar data features, OPM-MEG is a wearable design that fits children and adults, and it is also robust to head motion within a magnetically shielded room. This means that OPM-MEG can potentially extend the application of MEG into the neurobiology of severe childhood epilepsies with intellectual disabilities (e.g., epileptic encephalopathies) without sedation. It is worth noting that most OPM-MEG sensors are heated, which may become an issue with large OPM sensor arrays (OPM-MEG currently has fewer sensors than SQUID-MEG). Future implementation of triaxial sensors may alleviate the need for large OPM sensor arrays. OPM-MEG designs allowing both awake and sleep recording are essential for potential long-term epilepsy monitoring.


Subject(s)
Epilepsy , Wearable Electronic Devices , Adult , Child , Humans , Brain/physiology , Magnetoencephalography , Epilepsy/diagnosis , Neurobiology
7.
J Med Primatol ; 51(6): 407-410, 2022 12.
Article in English | MEDLINE | ID: mdl-35791288

ABSTRACT

We conducted a dose-response study of dexamethasone to investigate an optimal dexamethasone suppression test for common marmosets. Twelve marmosets received 0.1, 0.5, or 1.0 mg/kg dexamethasone. Doses of 0.5 and 1.0 mg/kg both suppressed endogenous cortisol for at least 18 h with greater individual variability in the lower 0.5 mg/kg dose.


Subject(s)
Callithrix , Hydrocortisone , Animals , Callithrix/physiology , Dexamethasone/pharmacology
8.
Cereb Cortex ; 31(3): 1411-1426, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33124661

ABSTRACT

We present here the first evidence of the much-predicted double dissociation between the effect of stress on cognitive skills [executive functions (EFs)] dependent on prefrontal cortex (PFC) by catechol-O-methyltransferase (COMT) genotype. The COMT gene polymorphism with methionine (Met) at codon 158 results in more dopamine (DA) in PFC and generally better EFs, while with valine (Val) at codon 158 the result is less PFC DA and generally poorer EFs. Many have predicted that mild stress, by raising PFC DA levels should aid EFs of COMT-Vals (bringing their PFC DA levels up, closer to optimal) and impair EFs of COMT-Mets (raising their PFC DA levels past optimal). We tested 140 men and women in a within-subject crossover design using extremely mild social evaluative stress. On trials requiring EFs (incongruent trials) of the Flanker/Reverse Flanker task, COMT-Val158 homozygotes performed better when mildly stressed than when calmer, while COMT-Met158 carriers performed worse when mildly stressed. Two other teams previously tried to obtain this, but only found stress impairing EFs of COMT-Mets, not improving EFs of COMT-Vals. Perhaps we found both because we used a much milder stressor. Evidently, the bandwidth for stress having a facilitative effect on EFs is exceedingly narrow.


Subject(s)
Catechol O-Methyltransferase/genetics , Executive Function/physiology , Prefrontal Cortex/physiology , Stress, Psychological , Adult , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide
9.
Int J Mol Sci ; 23(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269778

ABSTRACT

As in women with polycystic ovary syndrome (PCOS), hyperinsulinemia is associated with anovulation in PCOS-like female rhesus monkeys. Insulin sensitizers ameliorate hyperinsulinemia and stimulate ovulatory menstrual cycles in PCOS-like monkeys. To determine whether hyperinsulinemia (>694 pmol/L), alone, induces PCOS-like traits, five PCOS-like female rhesus monkeys with minimal PCOS-like traits, and four control females of similar mid-to-late reproductive years and body mass index, received daily subcutaneous injections of recombinant human insulin or diluent for 6−7 months. A cross-over experimental design enabled use of the same monkeys in each treatment phase. Insulin treatment unexpectedly normalized follicular phase duration in PCOS-like, but not control, females. In response to an intramuscular injection of 200 IU hCG, neither prenatally androgenized nor control females demonstrated ovarian hyperandrogenic responses while receiving insulin. An intravenous GnRH (100 ng/kg) injection also did not reveal evidence of hypergonadotropism. Taken together, these results suggest that experimentally induced adult hyperinsulinemia, alone, is insufficient to induce PCOS-like traits in female rhesus monkeys and to amplify intrinsic PCOS-like pathophysiology.


Subject(s)
Hyperandrogenism , Hyperinsulinism , Polycystic Ovary Syndrome , Animals , Female , Humans , Hyperinsulinism/chemically induced , Insulin , Macaca mulatta , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy
10.
BMC Cancer ; 21(1): 762, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210265

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy that most commonly affects the pleural layers. MPM has a strong association with asbestos, mainly caused by exposure to its biopersistent fibers in at least 80% of cases. Individuals with a chronic exposure to asbestos might develop disease with a 20-40-year latency with few or no symptoms. Such has been the case in the Italian regions of Piedmont and Lombardy, where industrial production of materials laden with asbestos, mainly cements, has been responsible for the onset of a large epidemic. Since 2018, a multidisciplinary team at San Matteo hospital in Pavia has been collecting data on over 100 patients with MPM. The main goal of this project is to define and describe an integrated profile for each MPM case at diagnosis by using data mining and partition analysis. METHODS: Here we bring together exhaustive epidemiologic, histologic and radiologic data of 88 MPM patients that came to our observation and draw correlations with predictive and prognostic significance. RESULTS: The median overall survival (OS) was 15.6 months. Most patients presented with pleural effusion, irrespective of disease stage. Quite unexpectedly, no statistically significant association was demonstrated between OS and TNM disease stage at diagnosis. Although average OS is similar in male and female patients, partition analysis of data underlined a significant differential hierarchy of predictor categories based on patient gender. In females with no smoking history, full chemotherapeutic regimens are associated with better outcomes. Moreover, concerning second line treatments, vinorelbine emerged as the most advantageous choice for female patients, whereas in the male subgroup no statistically significant difference resulted between gemcitabine and vinorelbine. CONCLUSION: A multidisciplinary approach to MPM is mandatory to define better therapeutic approaches, personalize the management and improve patient outcomes.


Subject(s)
Mesothelioma, Malignant/epidemiology , Mesothelioma, Malignant/therapy , Pleural Neoplasms/epidemiology , Pleural Neoplasms/therapy , Cohort Studies , Databases, Factual , Female , Humans , Male , Mesothelioma, Malignant/mortality , Pleural Neoplasms/mortality , Survival Analysis
11.
Sensors (Basel) ; 21(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573163

ABSTRACT

Understanding social behaviour in livestock groups requires accurate geo-spatial localisation data over time which is difficult to obtain in the field. Automated on-animal devices may provide a solution. This study introduced an Real-Time-Kinematic Global Navigation Satellite System (RTK-GNSS) localisation device (RTK rover) based on an RTK module manufactured by the company u-blox (Thalwil, Switzerland) that was assembled in a box and harnessed to sheep backs. Testing with 7 sheep across 4 days confirmed RTK rover tracking of sheep movement continuously with accuracy of approximately 20 cm. Individual sheep geo-spatial data were used to observe the sheep that first moved during a grazing period (movement leaders) in the one-hectare test paddock as well as construct social networks. Analysis of the optimum location update rate, with a threshold distance of 20 cm or 30 cm, showed that location sampling at a rate of 1 sample per second for 1 min followed by no samples for 4 min or 9 min, detected social networks as accurately as continuous location measurements at 1 sample every 5 s. The RTK rover acquired precise data on social networks in one sheep flock in an outdoor field environment with sampling strategies identified to extend battery life.


Subject(s)
Movement , Social Behavior , Animals , Biomechanical Phenomena , Female , Sheep , Social Networking , Switzerland
12.
Reproduction ; 159(1): R1-R13, 2020 01.
Article in English | MEDLINE | ID: mdl-31376813

ABSTRACT

Developmental origins of adult disease (DoHAD) refers to critical gestational ages during human fetal development and beyond when the endocrine metabolic status of the mother can permanently program the physiology and/or morphology of the fetus, modifying its susceptibility to disease after birth. The aim of this review is to address how DoHAD plays an important role in the phenotypic expression of polycystic ovary syndrome (PCOS), the most common endocrinopathy of women characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. Clinical studies of PCOS women are integrated with findings from relevant animal models to show how intergenerational transmission of these central components of PCOS are programmed through an altered maternal endocrine-metabolic environment that adversely affects the female fetus and long-term offspring health. Prenatal testosterone treatment in monkeys and sheep have been particularly crucial in our understanding of developmental programming of PCOS because organ system differentiation in these species, as in humans, occurs during fetal life. These animal models, along with altricial rodents, produce permanent PCOS-like phenotypes variably characterized by LH hypersecretion from reduced steroid-negative feedback, hyperandrogenism, ovulatory dysfunction, increased adiposity, impaired glucose-insulin homeostasis and other metabolic abnormalities. The review concludes that DoHAD underlies the phenotypic expression of PCOS through an altered maternal endocrine-metabolic environment that can induce epigenetic modifications of fetal genetic susceptibility to PCOS after birth. It calls for improved maternal endocrine-metabolic health of PCOS women to lower their risks of pregnancy-related complications and to potentially reduce intergenerational susceptibility to PCOS and its metabolic derangements in offspring.


Subject(s)
Infectious Disease Transmission, Vertical/statistics & numerical data , Intergenerational Relations , Polycystic Ovary Syndrome/etiology , Female , Humans , Polycystic Ovary Syndrome/pathology
13.
Epilepsia ; 61(1): 49-60, 2020 01.
Article in English | MEDLINE | ID: mdl-31792958

ABSTRACT

OBJECTIVE: The aim of this report is to present our clinical experience of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) in localizing the epileptogenic focus, and to evaluate the clinical impact and challenges associated with the use of EEG-fMRI in pharmacoresistant focal epilepsy. METHODS: We identified EEG-fMRI studies (n = 118) in people with focal epilepsy performed at our center from 2003 to 2018. Participants were referred from our Comprehensive Epilepsy Program in an exploratory research effort to address often difficult clinical questions, due to complex and difficult-to-localize epilepsy. We assessed the success of each study, the clinical utility of the result, and when surgery was performed, the postoperative outcome. RESULTS: Overall, 50% of EEG-fMRI studies were successful, meaning that data were of good quality and interictal epileptiform discharges were recorded. With an altered recruitment strategy since 2012 with increased inclusion of patients who were inpatients for video-EEG monitoring, we found that this patients in this selected group were more likely to have epileptic discharges detected during EEG-fMRI (96% of inpatients vs 29% of outpatients, P<.0001). To date, 48% (57 of 118) of patients have undergone epilepsy surgery. In 10 cases (17% of the 59 successful studies) the EEG-fMRI result had a "critical impact" on the surgical decision. These patients were difficult to localize because of subtle abnormalities, apparently normal MRI, or extensive structural abnormalities. All 10 had a good seizure outcome at 1 year after surgery (mean follow-up 6.5 years). SIGNIFICANCE: EEG-fMRI results can assist identification of the epileptogenic focus in otherwise difficult-to-localize cases of pharmacoresistant focal epilepsy. Surgery determined largely by localization from the EEG-fMRI result can lead to good seizure outcomes. A limitation of this study is its retrospective design with nonconsecutive recruitment. Prospective clinical trials with well-defined inclusion criteria are needed to determine the overall benefit of EEG-fMRI for preoperative localization and postoperative outcome in focal epilepsy.


Subject(s)
Electroencephalography/methods , Epilepsies, Partial/diagnosis , Epilepsies, Partial/surgery , Magnetic Resonance Imaging/methods , Adult , Brain Mapping/methods , Epilepsies, Partial/physiopathology , Female , Humans , Male , Retrospective Studies
14.
Reprod Biomed Online ; 40(6): 765-767, 2020 06.
Article in English | MEDLINE | ID: mdl-32312513

ABSTRACT

'Androgenized' rodent models are widely used to explore the pathophysiology underlying human polycystic ovary syndrome (PCOS), including reproductive and metabolic dysfunction. Based on a recent study using a dihydrotestosterone (DHT)-treated murine model, it has been proposed that prenatal androgen excess alone can predispose to transgenerational transmission of PCOS. From RNA sequencing analysis of metaphase II (MII) oocytes of androgenized lineages, the authors speculated that oocyte factors, including up-regulation of cytotoxic granulosa-associated RNA binding protein-like 1 (TiaL1), are sufficient to promote disease transfer across generations. Although this is an intriguing concept, it was not considered in the context of earlier publications in which the transcriptomes of human MII oocytes from PCOS women undergoing IVF were compared with women without PCOS. In one of these papers, a number of differentially expressed genes in PCOS MII oocytes (TIAL1 was not differentially expressed) were found to have putative response elements in their promoters for androgen receptors and peroxisome proliferating receptor gamma, providing a mechanism for how excess androgens and/or metabolic defects associated with PCOS might affect female germ cells.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Oocytes , Primates , RNA-Binding Proteins , Receptors, Androgen/genetics , Transcriptome
15.
Brain Topogr ; 33(5): 618-635, 2020 09.
Article in English | MEDLINE | ID: mdl-32623611

ABSTRACT

Head motion is a significant barrier to functional MRI (fMRI) in patients who are unable to tolerate awake scanning, including young children or those with cognitive and behavioural impairments. General anaesthesia minimises motion and ensures patient comfort, however the optimal anaesthesia regimen for fMRI in the paediatric setting is unknown. In this study, we tested the feasibility of anaesthetised fMRI in 11 patients (mean age = 9.8 years) with Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy associated with intellectual disability. fMRI was acquired during clinically-indicated MRI sessions using a synergistic anaesthesia regimen we typically administer for epilepsy neurosurgery: combined low-dose isoflurane (≤ 0.8% end-tidal concentration) with remifentanil (≤ 0.1 mcg/kg/min). Using group-level independent component analysis, we assessed the presence of resting-state networks by spatially comparing results in the anaesthetised patients to resting-state network templates from the 'Generation R' study of 536 similarly-aged non-anaesthetised healthy children (Muetzel et al. in Hum Brain Mapp 37(12):4286-4300, 2016). Numerous resting-state networks commonly studied in non-anaesthetised healthy children were readily identifiable in the anaesthetised patients, including the default-mode, sensorimotor, and frontoparietal networks. Independent component time-courses associated with these networks showed spectral characteristics suggestive of a neuronal origin of fMRI signal fluctuations, including high dynamic range and temporal frequency power predominantly below 0.1 Hz. These results demonstrate the technical feasibility of anaesthetised fMRI in children, suggesting that combined isoflurane-remifentanil anaesthesia may be an effective strategy to extend the emerging clinical applications of resting-state fMRI (for example, neurosurgical planning) to the variety of patient groups who may otherwise be impractical to scan.


Subject(s)
Anesthesia , Epilepsy , Intellectual Disability , Isoflurane , Child , Epilepsy/diagnostic imaging , Humans , Intellectual Disability/diagnostic imaging , Isoflurane/pharmacology , Magnetic Resonance Imaging , Remifentanil
16.
Sensors (Basel) ; 20(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961892

ABSTRACT

Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possible. In this study, based on the animals' location information acquired by a new cooperative wireless localisation system, unsupervised machine learning approaches were performed to identify the social structure of a small group of cattle yearlings (n=10) and the social behaviour of an individual. The paper first defined the affinity between an animal pair based on the ranks of their distance. Unsupervised clustering algorithms were then performed, including K-means clustering and agglomerative hierarchical clustering. In particular, K-means clustering was applied based on logical and physical distance. By comparing the clustering result based on logical distance and physical distance, the leader animals and the influence of an individual in a herd of cattle were identified, which provides valuable information for studying the behaviour of animal herds. Improvements in device robustness and replication of this work would confirm the practical application of this technology and analysis methodologies.


Subject(s)
Algorithms , Machine Learning , Social Behavior , Animals , Cattle , Cluster Analysis , Unsupervised Machine Learning
17.
Int J Obes (Lond) ; 43(5): 1034-1045, 2019 05.
Article in English | MEDLINE | ID: mdl-30022054

ABSTRACT

OBJECTIVE: In adult female rodents, ovarian estradiol (E2) regulates body weight, adiposity, energy balance, physical activity, glucose-insulin homeodynamics, and lipid metabolism, while protecting against diet-induced obesity. The same E2 actions are presumed to occur in primates, but confirmatory studies have been lacking. METHODS: We investigated the consequences of ovariectomy (OVX) and E2 replacement in female marmoset monkeys on major metabolic and morphometric endpoints. Sexual behavior and uterine diameters were assessed as positive controls for E2 treatment efficacy. Metabolic parameters were measured 1 mo prior to OVX, and 3 and 6 mo thereafter. During OVX, animals received empty or E2-containing silastic s.c. implants. To test the interaction between E2 and diet, both treatment groups were assigned to either a higher fat diet (HFD) or a low-fat diet (LFD). RESULTS: As anticipated, OVX animals exhibited diminished frequency (p = 0.04) of sexually receptive behavior and increased rejection behavior (p = 0.04) toward their male partners compared with E2-treated OVX females. OVX also decreased (p = 0.01) uterine diameter. There were no treatment effects on total caloric intake. There were no significant effects of OVX, E2 treatment, or diet on body weight, body composition, energy expenditure, physical activity, fasting glucose, or glucose tolerance. Regardless of E2 treatment, serum triglycerides were higher (p = 0.05) in HFD than LFD females. Postmortem qPCR analysis of hypothalamic tissues revealed higher mRNA expression (p < 0.001) for PGR in E2-treated monkeys versus OVX controls regardless of diet, but no differences between groups in other selected metabolic genes. In contrast, regardless of E2 treatment, there was a decreased mRNA expression of PGC1α (PPARGC1A), HTR1A, and HTR5A in HFD compared with LFD females. CONCLUSIONS: Our findings, overall, document a greatly diminished role for ovarian E2 in the metabolic physiology of a female primate, and encourage consideration that primates, including humans, evolved metabolic control systems regulated by extra-ovarian E2 or are generally less subject to E2 regulation.


Subject(s)
Energy Metabolism/physiology , Estradiol/metabolism , Estrogens/metabolism , Homeostasis/physiology , Ovariectomy , Sexual Behavior/physiology , Animals , Callithrix , Disease Models, Animal , Estradiol/administration & dosage , Estrogens/administration & dosage , Female , Hormone Replacement Therapy , Signal Transduction
18.
J Appl Toxicol ; 39(11): 1516-1531, 2019 11.
Article in English | MEDLINE | ID: mdl-31338854

ABSTRACT

In both human and animals, in utero exposure to bisphenol A (BPA), an endocrine-disrupting chemical used in the production of plastics and epoxy resins, has been shown to affect offspring reproductive and metabolic health during adult life. We hypothesized that the effect of prenatal exposure to environmentally relevant doses of BPA will be evident during fetal organogenesis and fetal/postnatal growth trajectory. Pregnant ewes were administered BPA subcutaneously from 30 to 90 days of gestation (term 147 days). Fetal organ weight, anthropometric measures, maternal/fetal hormones and postnatal growth trajectory were measured in both sexes. Gestational BPA administration resulted in higher accumulation in male than female fetuses only at fetal day 65, with minimal impact on fetal/maternal steroid milieu in both sexes at both time points. BPA-treated male fetuses were heavier than BPA-treated female fetuses at fetal day 90 whereas this sex difference was not evident in the control group. At the organ level, liver weight was reduced in prenatal BPA-treated female fetuses, while heart and thyroid gland weights were increased in BPA-treated male fetuses relative to their sex-matched control groups. Prenatal BPA treatment also altered the postnatal growth trajectory in a sex-specific manner. Males grew slower during the early postnatal period and caught up later. Females, in contrast, demonstrated the opposite growth trend. Prenatal BPA-induced changes in fetal organ differentiation and early life growth strongly implicate translational relevance of in utero contributions to reproductive and metabolic defects previously reported in adult female offspring.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Fetal Development/drug effects , Organogenesis/drug effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Sex Characteristics , Animals , Female , Male , Pregnancy , Sheep
19.
Am J Primatol ; 81(2): e22905, 2019 02.
Article in English | MEDLINE | ID: mdl-30106167

ABSTRACT

Estrogen depletion leads to bone loss in almost all mammals with frequent regular ovarian cycles. However, subordinate adult female common marmosets (Callithrix jacchus) undergo socially induced anovulation and hypoestrogenism without clinically apparent adverse skeletal consequences. Thus, we speculated that this non human primate might have evolved a mechanism to avoid estrogen-depletion bone loss. To test this possibility, we performed three experiments in which lumbar-spine (L5-L6) bone mineral content (BMC) and density (BMD) were assessed using dual-energy X-ray absorptiometry: (i) cross-sectionally in 13 long-term ovariectomized animals and 12 age- and weight-matched controls undergoing ovulatory cycles; (ii) longitudinally in 12 animals prior to, 3-4 and 6-7 months following ovariectomy (ovx), and six controls; and (iii) cross-sectionally in nine anovulatory subordinate and nine dominant females. In Experiments 1 and 3, plasma estradiol and estrone concentrations were measured and uterine dimensions were obtained by ultrasound in a subset of animals as a marker of functional estrogen depletion. Estrogen levels, uterine trans-fundus width, and uterine dorso-ventral diameter were lower in ovariectomized and subordinate females than in those undergoing ovulatory cycles. However, no differences were found in L5-L6 BMC or BMD. These results indicate that estrogen depletion, whether surgically or socially induced, is not associated with lower bone mass in female common marmosets. Thus, this species may possess unique adaptations to avoid bone loss associated with estrogen depletion.


Subject(s)
Bone Density/physiology , Callithrix/physiology , Estrogens/deficiency , Animals , Anovulation , Callithrix/blood , Estradiol/blood , Estrone/blood , Female , Lumbar Vertebrae/physiology , Menstrual Cycle/blood , Menstrual Cycle/physiology , Ovariectomy , Social Dominance , Uterus/physiology
20.
Reproduction ; 156(5): R155-R167, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30325182

ABSTRACT

Adequate maternal vascular adaptations and blood supply to the uterus and placenta are crucial for optimal oxygen and nutrient transport to growing fetuses of eutherian mammals, including humans. Multiple factors contribute to hemodynamics and structuring of placental vasculature essential for term pregnancy with minimal complications. In women, failure to achieve or sustain favorable pregnancy progression is, not surprisingly, associated with high incidence of antenatal complications, including preeclampsia, a hypertensive disorder of pregnancy. While the pathogenesis of preeclampsia in women remains unknown, a role for androgens is emerging. The relationship between androgens and maternal cardiovascular and placental function deserves particular consideration because testosterone levels in the circulation of preeclamptic women are elevated approximately two- to three-fold and are positively correlated with vascular dysfunction. Preeclampsia is also associated with elevated placental androgen receptor (AR) gene expression. Studies in animal models mimicking the pattern and level of increase of adult female testosterone levels to those found in preeclamptic pregnancies, replicate key features of preeclampsia, including gestational hypertension, endothelial dysfunction, exaggerated vasoconstriction to angiotensin II, reduced spiral artery remodeling, placental hypoxia, decreased nutrient transport and fetal growth restriction. Taken together, these data strongly implicate AR-mediated testosterone action as an important pathway contributing to clinical manifestation of preeclampsia. This review critically addresses this hypothesis, taking into consideration both clinical and preclinical data.


Subject(s)
Pre-Eclampsia/etiology , Testosterone/blood , Animals , Blood Pressure , Female , Fetal Development , Humans , Placenta/physiology , Placentation , Pre-Eclampsia/blood , Pregnancy , Uterine Artery/physiology
SELECTION OF CITATIONS
SEARCH DETAIL