Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Zool ; 17: 31, 2020.
Article in English | MEDLINE | ID: mdl-33072165

ABSTRACT

BACKGROUND: The initiation of desert conditions in the Tarim Basin in China since the late Miocene has led to the significant genetic structuring of local organisms. Tarim Red Deer (Cervus elaphus yarkandensis, TRD) have adapted to the harsh environmental conditions in this basin, including high solar radiation and temperature, aridity, and poor nutritional conditions. However, the underlying genetic basis of this adaptation is poorly understood. RESULTS: We sequenced the whole genomes of 13 TRD individuals, conducted comparative genomic analyses, and estimated demographic fluctuation. The ∂a∂i model estimated that the TRD and Tule elk (Cervus canadensis nannodes) populations diverged approximately 0.98 Mya. Analyses revealed a substantial influence of the Earth's climate on the effective population size of TRD, associated with glacial advances and retreat, and human activities likely underlie a recent serious decline in population. A marked bottleneck may have profoundly affected the genetic diversity of TRD populations. We detected a set of candidate genes, pathways, and GO categories related to oxidative stress, water reabsorption, immune regulation, energy metabolism, eye protection, heat stress, respiratory system adaptation, prevention of high blood pressure, and DNA damage and repair that may directly or indirectly be involved in the adaptation of TRD to an arid-desert environment. CONCLUSIONS: Our analyses highlight the role of historical global climates in the population dynamics of TRD. In light of ongoing global warming and the increasing incidence of droughts, our study offers insights into the genomic adaptations of animals, especially TRD, to extreme arid-desert environments and provides a valuable resource for future research on conservation design and biological adaptations to environmental change.

2.
Heredity (Edinb) ; 122(2): 205-218, 2019 02.
Article in English | MEDLINE | ID: mdl-29959426

ABSTRACT

Because of their role in immune defense against pathogens, major histocompatibility complex (MHC) genes are useful in evolutionary studies on how wild vertebrates adapt to their environments. We investigated the molecular evolution of MHC class I (MHCI) genes in four closely related species of Eurasian badgers, genus Meles. All four species of badgers showed similarly high variation in MHCI sequences compared to other Carnivora. We identified 7-21 putatively functional MHCI sequences in each of the badger species, and 2-7 sequences per individual, indicating the existence of 1-4 loci. MHCI exon 2 and 3 sequences encoding domains α1 and α2 exhibited different clade topologies in phylogenetic networks. Non-synonymous nucleotide substitutions at codons for antigen-binding sites exceeded synonymous substitutions for domain α1 but not for domain α2, suggesting that the domains α1 and α2 likely had different evolutionary histories in these species. Positive selection and recombination seem to have shaped the variation in domain α2, whereas positive selection was dominant in shaping the variation in domain α1. In the separate phylogenetic analyses for exon 2, exon 3, and intron 2, each showed three clades of Meles alleles, with rampant trans-species polymorphism, indicative of the long-term maintenance of ancestral MHCI polymorphism by balancing selection.


Subject(s)
Evolution, Molecular , Genes, MHC Class I , Mustelidae/genetics , Alleles , Animals , Exons , Genetic Variation , Mustelidae/classification , Phylogeny , Polymorphism, Genetic , Recombination, Genetic
3.
Sci Rep ; 13(1): 19352, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935954

ABSTRACT

The major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates, and their proteins play a critical role in adaptive immunity for defense against a variety of pathogens. MHC diversity was lost in many species after experiencing a decline in size. To understand the variation and evolution of MHC genes in the Siberian ibex, Capra sibirica, which has undergone a population decline, we analyzed the variation of the second exon of MHC class II DRB genes in samples collected from five geographic localities in Xinjiang, China, that belong to three diverged mitochondrial clades. Consequently, we identified a total of 26 putative functional alleles (PFAs) with 260 bp in length from 43 individuals, and found one (for 27 individuals) to three (for 5 individuals) PFAs per individual, indicating the presence of one or two DRB loci per haploid genome. The Casi-DRB1*16 was the most frequently occurring PFA, Casi-DRB1*22 was found in only seven individuals, 14 PFAs occurred once, 7 PFAs twice, implying high frequency of rare PFAs. Interestingly, more than half (15) of the PFAs were specific to clade I, only two and three PFAs were specific to clades II and III, respectively. So, we assume that the polygamy and sexual segregation nature of this species likely contributed to the allelic diversity of DRB genes. Genetic diversity indices showed that PFAs of clade II were lower in nucleotide, amino acid, and supertype diversity compared to those of the other two clades. The pattern of allele sharing and FST values between the three clades was to some extent in agreement with the pattern observed in mitochondrial DNA divergence. In addition, recombination analyses revealed no evidence for significant signatures of recombination events. Alleles shared by clades III and the other two clades diverged 6 million years ago, and systematic neighbor grids showed Trans-species polymorphism. Together with the PAML and MEME analyses, the results indicated that the DRB gene in C. sibirica evolved under balancing and positive selection. However, by comparison, it can be clearly seen that different populations were under different selective pressures. Our results are valuable in understanding the diversity and evolution of the DRB gene in a mountain living C. sibirica and in making decisions on future long-term protection strategies.


Subject(s)
Fluorocarbons , Polymorphism, Genetic , Humans , Animals , Exons , Goats/genetics , Demography , Phylogeny , Alleles , Genetic Variation
4.
Ecol Evol ; 13(8): e10288, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37539073

ABSTRACT

Maternal lineages of mitochondrial DNA (mtDNA) are recognized as important components of intra and interspecific biodiversity and help us to disclose the phylogeny and divergence times of many taxa. Species of the genus Capra are canonical mountain dwellers. Among these is the Siberian ibex (Capra sibirica), which is regarded as a relic species whose intraspecific classification has been controversial so far. We collected 58 samples in Xinjiang, China, and analyzed the mtDNA genes to shed light on the intraspecific relationships of the C. sibirica populations and estimate the divergence time. Intriguingly, we found that the mtDNA sequences of C. sibirica split into two main lineages in both phylogenetic and network analyses: the Southern lineage, sister to Capra falconeri, consisting of samples from Ulugqat, Kagilik (both in Xinjiang), India, and Tajikistan; and the Northern lineage further divided into four monophyletic clades A-D corresponding to their geographic origins. Samples from Urumqi, Sawan, and Arturk formed a distinct monophyletic clade C within the Northern lineage. The genetic distance between the C. sibirica clades ranges from 3.0 to 8.6%, with values of F ST between 0.839 and 0.960, indicating notable genetic differentiation. The split of the genus Capra occurred approximately 6.75 Mya during the late Miocene. The Northern lineage diverged around 5.88 Mya, followed by the divergence of Clades A-D from 3.30 to 1.92 Mya during the late Pliocene and early Pleistocene. The radiation between the Southern lineage and C. falconeri occurred at 2.29 Mya during the early Pleistocene. Our results highlight the importance of extensive sampling when relating to genetic studies of alpine mammals and call for further genomic studies to draw definitive conclusions.

5.
Microbiome ; 11(1): 7, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631912

ABSTRACT

BACKGROUND: As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the health, diseases, athletic performance, and behaviour of horses. RESULTS: Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, including 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagenome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance. CONCLUSION: Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource for discovery of performance-enhancing microbes and studies of horse gut microbiome. Video Abstract.


Subject(s)
Athletic Performance , Gastrointestinal Microbiome , Horses/genetics , Humans , Animals , Metagenome , Genome, Bacterial , Gastrointestinal Microbiome/genetics , Drug Resistance, Microbial , Metagenomics
6.
Ecol Evol ; 9(13): 7861-7874, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31346446

ABSTRACT

Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and ß duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the ß duplication block. Our results indicate that MHCI genes in the κ and ß duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat-specific three- or five-amino-acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide-binding groove, as previously assayed by a bat MHCI gene with a three-amino-acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon-specific manner.

SELECTION OF CITATIONS
SEARCH DETAIL