Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 116, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229295

ABSTRACT

Biotreatment of oily sludge and the involved microbial communities, particularly in saline environments, have been rarely investigated. We enriched a halophilic bacterial consortium (OS-100) from petroleum refining oily sludge, which degraded almost 86% of the aliphatic hydrocarbon (C10-C30) fraction of the oily sludge within 7 days in the presence of 100 g/L NaCl. Two halophilic hydrocarbon-degrading bacteria related to the genera Chromohalobacter and Halomonas were isolated from the OS-100 consortium. Hydrocarbon degradation by the OS-100 consortium was relatively higher compared to the isolated bacteria, indicating potential synergistic interactions among the OS-100 community members. Exclusion of FeCl2, MgCl2, CaCl2, trace elements, and vitamins from the culture medium did not significantly affect the hydrocarbon degradation efficiency of the OS-100 consortium. To the contrary, hydrocarbon biodegradation dropped from 94.1 to 54.4% and 5% when the OS-100 consortium was deprived from phosphate and nitrogen sources in the culture medium, respectively. Quantitative PCR revealed that alkB gene expression increased up to the 3rd day of incubation with 11.277-fold, consistent with the observed increments in hydrocarbon degradation. Illumina-MiSeq sequencing of 16 S rRNA gene fragments revealed that the OS-100 consortium was mainly composed of the genera Halomonas, Idiomarina, Alcanivorax and Chromohalobacter. This community structure changed depending on the culturing conditions. However, remarkable changes in the community structure were not always associated with remarkable shifts in the hydrocarbonoclastic activity and vice versa. The results show that probably synergistic interactions between community members and different subpopulations of the OS-100 consortium contributed to salinity tolerance and hydrocarbon degradation.


Subject(s)
Petroleum , Sewage , Sewage/microbiology , Oils/metabolism , Bacteria/genetics , Bacteria/metabolism , Hydrocarbons/metabolism , Petroleum/microbiology , Biodegradation, Environmental , Archaea/metabolism , Culture Media/metabolism
2.
Environ Sci Technol ; 56(16): 11865-11877, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35929951

ABSTRACT

Biocrusts covering drylands account for major fractions of terrestrial biological nitrogen fixation and release large amounts of gaseous reactive nitrogen (Nr) as nitrous acid (HONO) and nitric oxide (NO). Recent investigations suggested that aerobic and anaerobic microbial nitrogen transformations occur simultaneously upon desiccation of biocrusts, but the spatio-temporal distribution of seemingly contradictory processes remained unclear. Here, we explore small-scale gradients in chemical concentrations related to structural characteristics and organism distribution. X-ray microtomography and fluorescence microscopy revealed mixed pore size structures, where photoautotrophs and cyanobacterial polysaccharides clustered irregularly in the uppermost millimeter. Microsensor measurements showed strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 µM) and pH values (∼6.5 to 9.5) were highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.


Subject(s)
Cyanobacteria , Soil , Nitric Oxide , Nitrites , Nitrogen/analysis , Nitrous Acid/chemistry , Nitrous Oxide/analysis , Soil/chemistry
3.
Appl Environ Microbiol ; 87(17): e0069821, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34160273

ABSTRACT

Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling, in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinities of ≤30% (wt/vol) in situ, at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed 2 days after reducing the porewater salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria, Bacteroidetes, and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria, which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this salt flat mat ultimately depends on periodic salt dilution to be self-sustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. IMPORTANCE Due to their abilities to survive intense radiation and low water availability, hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even the limitations imposed on microbial processes by saturation-level salinity found on Earth have rarely been studied in situ. While abundance and diversity of microbial life in salt-saturated environments are well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. In particular, oxygenic photosynthesis has barely been explored beyond 5 M NaCl (28% wt/vol). By applying a variety of biogeochemical and molecular methods, we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust-covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several-fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations.


Subject(s)
Archaea/metabolism , Bacteria/isolation & purification , Geologic Sediments/microbiology , Sodium Chloride/metabolism , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Geologic Sediments/analysis , Microbiota , Oxygen/analysis , Oxygen/metabolism , Photosynthesis , Phylogeny , Sodium Chloride/analysis , Sulfur/analysis , Sulfur/metabolism
4.
Article in English | MEDLINE | ID: mdl-33739249

ABSTRACT

A novel slightly halophilic Gram-stain-negative bacterial strain (MKS20T) was isolated from a brine sample collected from one of the Anderton brine springs in the Cheshire salt district, located in Northern England. Phylogenetic analysis of the 16S rRNA gene sequence revealed a close proximity to Motilimonas eburnea (98.30 %), followed by Motilimonas pumila (96.62 %), the two currently described species within the genus Motilimonas. Strain MKS20T forms white-beige-pigmented colonies and grows optimally at 28-30 °C, in 1-3 % (w/v) NaCl and at pH 7-7.5. The strain was facultatively anaerobic and showed a broader range of carbohydrate use than other species in the genus Motilimonas. Q-8 was the sole respiratory quinone and the major fatty acids (>10 %) were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The polar lipid profile included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyglycerol and several unidentified lipids. The G+C content of the genomic DNA was 44.2 mol%. Average nucleotide identity and DNA-DNA hybridization data were consistent with assignment to a separate species. Based on the phylogenetic and genomic-based analyses, as well as physiological and biochemical characteristics, we propose that strain MKS20T (=DSM 109936T, MCCC 1K04071T) represents a new species of the genus Motilimonas, with the name Motilimonas cestriensis sp. nov.

5.
Microb Ecol ; 78(2): 361-374, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30535914

ABSTRACT

Although marine biofouling has been widely studied on different substrates, information on biofouling on plastics in the Arabian Gulf is limited. Substrate- and location-specific effects were investigated by comparing the microbial communities developed on polyethylene terephthalate (PET) and polyethylene (PE) with those on steel and wood, at two locations in the Sea of Oman. Total biomass was lower on PET and PE than on steel and wood. PET had the highest bacterial abundance at both locations, whereas chlorophyll a concentrations did not vary between substrates. MiSeq 16S ribosomal RNA sequencing revealed comparable operational taxonomic unit (OTU) richness on all substrates at one location but lower numbers on PET and PE at the other location. Non-metric multidimensional scaling (NMDS) showed distinct clusters of the bacterial communities based on substrate (analysis of similarity (ANOSIM), R = 0.45-0.97, p < 0.03) and location (ANOSIM, R = 0.56, p < 0.0001). The bacterial genera Microcystis and Hydrogenophaga and the diatoms Licmophora and Mastogloia were specifically detected on plastics. Desulfovibrio and Pseudomonas spp. exhibited their highest abundance on steel and Corynebacterium spp. on wood. Scanning electron microscopy (SEM) revealed fissure formation on PET and PE, indicating physical degradation. The presence of free radicals on PET and carbonyl bonds (C=O) on PE, as revealed by Fourier transform infrared (FTIR) spectroscopy, indicated abiotic degradation while hydroxyl groups and spectral peaks for proteins and polysaccharides on PE indicated biotic degradation. We conclude that fouling microbial communities are not only substrate-specific but also location-specific and microbes developing on plastics could potentially contribute to their degradation in the marine environment.


Subject(s)
Bacteria/isolation & purification , Microbiota , Plastics/chemistry , Steel/chemistry , Wood/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/growth & development , Biofouling , Polyethylene Terephthalates/chemistry , Species Specificity
6.
Biofouling ; 35(5): 526-540, 2019 05.
Article in English | MEDLINE | ID: mdl-31216872

ABSTRACT

Microbial succession during the initial stages of marine biofouling has been rarely studied, especially in the Arabian Gulf. This study was undertaken to follow temporal shifts in biofouling communities in order to identify primary and secondary colonizers. Quantitative analysis revealed a significant increase in total biomass, coverage of macrofoulers, chlorophyll a concentrations, and bacterial counts with time. The relative abundance of the adnate diatoms increased with time, whereas it decreased in the case of the plocon diatoms. Non-metric multidimensional scaling (NMDS) ordination based on MiSeq data placed the bacterial communities in three distinct clusters, depending on the time of sampling. While the relative abundance of Alphaproteobacteria and Flavobacteriia decreased with time, suggesting their role as primary colonizers, the relative abundance of Actinobacteria and Planctomycetia increased with time, suggesting their role as secondary colonizers. Biofouling is a dynamic process that involves temporal quantitative and qualitative shifts in the micro- and macrofouling communities.


Subject(s)
Biofouling , Microbiota , Biofilms , Biomass , Chlorophyll A/metabolism , Diatoms , Time Factors
7.
Ecotoxicology ; 28(4): 435-448, 2019 May.
Article in English | MEDLINE | ID: mdl-30929110

ABSTRACT

As the production of metallic nanoparticles has grown, it is important to assess their impacts on structural and functional components of ecosystems. We investigated the effects of zinc and titanium nanoparticles on leaf decomposition in freshwater habitats. We hypothesized that nanoparticles would inhibit the growth and activity of microbial communities leading to decreased decomposition rates. We also hypothesized that under natural light, the nanoparticles would produce reactive oxygen species that could potentially accelerate decomposition. In the lab, whole Ficus vasta leaves were placed in containers holding one liter of stream water and exposed to either 0, 1, 10 or 100 mg/L of ZnO or TiO2 nanoparticles for six weeks (referred to as Exp. 1). We measured leaf mass loss, microbial metabolism, and bacterial density at 2, 4, and 6 weeks. In a second experiment (referred to as Exp. 2), we measured the effects of light and 10 and 100 mg/L ZnO or TiO2 nanoparticles on leaf mass loss, bacterial density and the bacterial and fungal community diversity over a 2 week period. In Experiment 1, mass loss was significantly reduced at 10 and 100 mg/L after 6 weeks and bacterial density decreased at 100 mg/L. In Experiment 2, there was no effect of ZnO nanoparticles on leaf mass loss, but TiO2 nanoparticles significantly reduced mass loss in the dark but not in the light. One possible explanation is that release of reactive oxygen species by the TiO2 nanoparticles in the light may have increased the rate of leaf decomposition. Bacterial and fungal diversity was highest in the dark, but nanoparticles did not reduce overall diversity.


Subject(s)
Bacterial Physiological Phenomena/drug effects , Fungi/drug effects , Light , Plant Leaves/drug effects , Titanium/administration & dosage , Zinc Oxide/administration & dosage , Biodegradation, Environmental/drug effects , Dose-Response Relationship, Drug , Ficus/drug effects , Ficus/physiology , Fungi/physiology , Metal Nanoparticles/administration & dosage , Microbiota/drug effects , Plant Leaves/physiology , Rivers
8.
Microb Pathog ; 123: 419-425, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30075241

ABSTRACT

Elucidation of bioactive chemical compounds from rhizobacteria is highly utilized in pharmaceuticals and naturopathy, due to their health benefits to human and plants. In current study, four cyclopeptides along with one phenyl amide were isolated from the ethyl acetate extract of Bacillus velezensis sp. RA5401. Their structures were determined and characterized as cycle (L-prolyl-L-leucyl)2 (1), cyclo (L-prolyl-l-valine)2 (2), cycle (L-phenylanalyl-L-propyl)2 (3), cyclo (D-pro-L-tyr-L-pro-L-tyr)2 (4) and N-(2-phenylethyl)acetamide (5) on the basis of electron spray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) techniques and comparison with the literature data. The five compounds have been isolated for the first time from this species. The effect of various concentrations of these compounds on the proliferation of MDA-MB-231 breast cancer cells was examined. It was found that 1 and 2 induced concentration-independent anti-proliferative effects, while 3, 4 and 5 inhibited cancer cell proliferation in a concentration-dependent manner. Furthermore, to determine the suitable binding targets of these compounds within cancer cell line, detailed target prediction and comparative molecular-docking studies were performed. The compounds 1 and 2 hit intracellular anti-cancer targets of proteases family, while compounds 3, 4 and 5 interacted with different membrane receptors of G-Protein-Coupled Receptors (GPCRs). In conclusion, the Bacillus velezensis RA5401 can be an ideal strain to produce anti-proliferative constituents at industrial scale.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bacillus/metabolism , Cell Proliferation/drug effects , Molecular Docking Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, G-Protein-Coupled/chemistry , Bacillus/genetics , Bacillus/isolation & purification , Cell Line, Tumor/drug effects , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Oman , RNA, Ribosomal, 16S/genetics , Receptors, G-Protein-Coupled/metabolism , Secondary Metabolism , Soil Microbiology
9.
Microb Ecol ; 75(2): 331-347, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28736793

ABSTRACT

Hypersaline intertidal zones are highly dynamic ecosystems that are exposed to multiple extreme environmental conditions including rapidly and frequently changing parameters (water, nutrients, temperature) as well as highly elevated salinity levels often caused by high temperatures and evaporation rates. Microbial mats in most extreme settings, as found at the coastline of the subtropical-arid Arabian Peninsula, have been relatively less studied compared to their counterparts around the world. We report, here, for the first time on the diversity of the bacterial and archaeal communities of marine microbial mats along an intertidal transect in a wide salt flat with strongly increased salinity employing Illumina MiSeq technology for amplicon sequencing of 16S rRNA gene fragments. Microbial communities were dominated by typical halotolerant to halophilic microorganisms, with clear shifts in community composition, richness, and diversity along the transect. Highly adapted specialists (e.g., Euhalothece, Salinibacter, Nanohaloarchaeota) were mainly found at the most extreme, upper tidal sites and less specialized organisms with wide tolerance ranges (e.g., Lyngbya, Rhodovibrio, Salisaeta, Halobacteria) in intermediate sites of the transect. The dominating taxa in the lower tidal sites were typical members of well-stabilized mats (e.g., Coleofasciculus, Anaerolineaceae, Thaumarchaeota). Up to 40% of the archaeal sequences per sample represented so far unknown phyla. In conclusion, the bacterial richness and diversity increased from upper towards lower tidal sites in line with increasing mat stabilization and functional diversity, opposed to that of cyanobacteria only and archaea, which showed their highest richness and diversity in upper tidal samples.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Biodiversity , Cyanobacteria/growth & development , Geologic Sediments/microbiology , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Ecosystem , Geologic Sediments/analysis , Oman , Phylogeny , RNA, Ribosomal, 16S/genetics , Salinity , Seawater/analysis , Seawater/microbiology , Sodium Chloride/analysis , Sodium Chloride/metabolism
10.
Biofouling ; 34(9): 1064-1077, 2018 10.
Article in English | MEDLINE | ID: mdl-30621450

ABSTRACT

For the first time, the densities and diversity of microorganisms developed on ocean gliders were investigated using flow cytometry and Illumina MiSeq sequencing of 16S and 18S rRNA genes. Ocean gliders are autonomous buoyancy-driven underwater vehicles, equipped with sensors continuously recording physical, chemical, and biological parameters. Microbial biofilms were investigated on unprotected parts of the glider and surfaces coated with base, biocidal and chitosan paints. Biofilms on the glider were exposed to periodical oscillations of salinity, oxygen, temperature, pressure, depth and light, due to periodic ascending and descending of the vehicle. Among the unprotected surfaces, the highest microbial abundance was observed on the bottom of the glider's body, while the lowest density was recorded on the glider's nose. Antifouling paints had the lowest densities of microorganisms. Multidimensional analysis showed that the microbial communities formed on unprotected parts of the glider were significantly different from those on biocidal paint and in seawater.


Subject(s)
Biofilms/growth & development , Biofouling/prevention & control , Chitosan , Environmental Monitoring/methods , Paint , Seawater/microbiology , Chitosan/chemistry , Disinfectants , Environmental Monitoring/instrumentation , Indian Ocean , Salinity
11.
Environ Microbiol ; 17(10): 3678-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25471738

ABSTRACT

Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2 , sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century.


Subject(s)
Carbon Dioxide/analysis , Geologic Sediments/microbiology , Microbial Consortia , Nitrogen Cycle/physiology , Seawater/microbiology , Ammonia/metabolism , Archaea/classification , Archaea/metabolism , DNA-Directed DNA Polymerase , Ecosystem , Flavobacteriaceae/classification , Nitrification/physiology , Oceans and Seas , Papua New Guinea , Rhodobacteraceae/classification , Volcanic Eruptions
12.
Microb Ecol ; 69(1): 95-105, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25103912

ABSTRACT

Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P < 0.0001) and shared less than 20 % of their operational taxonomic units (OTUs). OTU richness was relatively higher in the soils with the higher oil pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42-89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.


Subject(s)
Petroleum Pollution/adverse effects , Petroleum/toxicity , Acidobacteria/drug effects , Acidobacteria/genetics , Acidobacteria/metabolism , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/metabolism , Bacillus/drug effects , Bacillus/genetics , Bacillus/metabolism , Desert Climate , Proteobacteria/drug effects , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal/genetics , Soil Microbiology
13.
Proc Natl Acad Sci U S A ; 109(24): E1558-67, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22615403

ABSTRACT

We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O(2) and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.


Subject(s)
Anthozoa , Geologic Sediments , Animals , Bacteria/genetics , Bacteria/metabolism , Ecosystem , Electrophoresis, Polyacrylamide Gel , Hydrogen Sulfide/analysis , Hydrogen-Ion Concentration , Oxygen/analysis , RNA, Ribosomal, 16S/genetics
14.
Biofouling ; 30(10): 1155-64, 2014.
Article in English | MEDLINE | ID: mdl-25390938

ABSTRACT

The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.


Subject(s)
Bacteria/drug effects , Biofilms/drug effects , Biofouling/prevention & control , Disinfectants/pharmacology , Bacteria/classification , Copper/pharmacology , Diatoms/classification , Diatoms/drug effects , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics , Seawater , Ships
15.
Environ Toxicol Chem ; 43(1): 132-146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37861374

ABSTRACT

Sertraline is widely prescribed to treat anxiety and depression. Sertraline acts by blocking serotonin, norepinephrine, and dopamine transporters systems and has been detected in surface waters globally, where it may impact fish behavior. We classified zebrafish personality on three behavioral axes, boldness, anxiety, and sociability, assigning fish as either high or low in each category. The fish were exposed to nominal concentrations of 0, 5, 50, 500, or 5000 ng/L sertraline (measured concentrations: <10, 21.3, 370, and 2200 ng/L, respectively) to assess changes in boldness, anxiety, and sociability after 7 and 28 days. We also measured shoaling behavior and response to an alarm cue, and determined the gut microbiome of a subset of fish. After 7 days there was no overall effect of sertraline on boldness, but there was an interaction between initial personality and sex, with a stronger impact on females classified as low-boldness personality. Sertraline reduced sociability in all treatments compared with the control, but there was again an interaction between sertraline and initial personality. Fish that were classified as low-sociability responded more strongly to sertraline. After 7 days, fish exposed to a nominal concentration of 5000 ng/L (2200 ng/L measured) showed higher anxiety than controls, with the overall pattern of initial behavior retained. After 28 days, similar patterns were observed, but with higher variation. There was only a weak association between the gut microbiome and personality. Overall, the study highlights the importance of considering initial behavior, which can affect response to pollutants. Our results may also be applicable to human studies and provide a mechanism to explain why different individuals respond differently to the drug. Environ Toxicol Chem 2024;43:132-146. © 2023 SETAC.


Subject(s)
Sertraline , Water Pollutants, Chemical , Animals , Female , Humans , Sertraline/toxicity , Zebrafish/physiology , Personality , Behavior, Animal , Water Pollutants, Chemical/toxicity
16.
Environ Toxicol Pharmacol ; 111: 104561, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233253

ABSTRACT

Microplastic pollution is associated with inflammation, gut dysbiosis and behavioral changes in fish. Fish have distinct personality traits but the role of personality in behavioral toxicology is rarely considered. We classified zebrafish on four behavioral axes: boldness, anxiety, sociability and exploration tendency then exposed them to low- or high- concentrations of two types of polyethylene microplastics (low- and high-density) for 28 days. Behaviors, antioxidant enzymes (catalase and superoxide dismutase), and gut microbiome were then measured. There were direct effects of microplastics on boldness, anxiety and sociability. However, fish retained their initial behavioral tendencies. Exposure to all microplastic treatments reduced average swimming speed and decreased the time spent motionless. Microplastic exposure did not affect antioxidant enzymes but did cause significant changes in the composition of the gut microbiome. This study demonstrates that environmentally realistic concentrations of microplastics can alter fish behavior, but much of the variance in response can be explained by personality.

17.
Article in English | MEDLINE | ID: mdl-39102082

ABSTRACT

Water pollution with toxic hexavalent chromium, Cr(VI), is an environmental threat that has a direct impact on living organisms. The use of microorganisms from microbial mats to remove Cr(VI) has scarcely been investigated. Here, we isolated aerobic heterotrophic bacteria from a Cr-polluted microbial mat found in a mining site in Oman, and investigated their ability to remove Cr(VI), and the underlying mechanism(s) of removal. All isolates fell phylogenetically into the genera Enterobacter, Bacillus, and Cupriavidus, and could completely remove 1 mg L-1 Cr(VI) in 6 days. The strains could tolerate up to 2000 mg L-1 Cr(VI), and exhibited the highest Cr(VI) removal rate at 100 ± 9 mg L-1 d-1. Using scanning electron microscopy (SEM) coupled with elemental analysis, the strains were shown to adsorb Cr(VI) at their cell surfaces. The functional groups OH, NH2, Alkyl, Metal-O, and Cr(VI)-O were involved in the biosorption process. In addition, the strains were shown to reduce Cr(VI) to Cr(III) with the involvement of chromate reductase enzyme. We conclude that the aerobic heterotrophic bacteria isolated from Cr-polluted microbial mats use biosorption and bioreduction processes to remove Cr(VI) from wastewater.

18.
Biofouling ; 29(6): 617-27, 2013.
Article in English | MEDLINE | ID: mdl-23697809

ABSTRACT

The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies.


Subject(s)
Biofilms/growth & development , Biofouling/prevention & control , Color , Paint/microbiology , Water Microbiology , Acrylic Resins/analysis , Bacteria/growth & development , Biomass , Diatoms/growth & development , Microscopy, Fluorescence , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Surface Properties
19.
Biofouling ; 29(4): 423-41, 2013.
Article in English | MEDLINE | ID: mdl-23574279

ABSTRACT

Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.


Subject(s)
Aquatic Organisms/chemistry , Biofilms , Biofouling/prevention & control , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Aquatic Organisms/drug effects , Aquatic Organisms/physiology , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Adhesion/drug effects , Cyanobacteria/chemistry , Disinfectants/chemistry , Disinfectants/isolation & purification , Disinfectants/pharmacology , Fungi/chemistry , Larva/drug effects , Symbiosis , Thoracica/drug effects
20.
J Ind Microbiol Biotechnol ; 40(7): 759-72, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23645384

ABSTRACT

In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Cyanobacteria/growth & development , Halobacteriaceae/chemistry , Proteobacteria/chemistry , Quorum Sensing/drug effects , Biofouling/prevention & control , Chlorophyta/drug effects , Chlorophyta/growth & development , Chromobacterium/drug effects , Diatoms/drug effects , Diketopiperazines/isolation & purification , Diketopiperazines/pharmacology , Dipeptides/isolation & purification , Dipeptides/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Indoles/metabolism , Microbial Sensitivity Tests , Phylogeny , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL