Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645922

ABSTRACT

The nervous system needs to balance the stability of neural representations with plasticity. It is unclear what is the representational stability of simple actions, particularly those that are well-rehearsed in humans, and how it changes in new contexts. Using an electrocorticography brain-computer interface (BCI), we found that the mesoscale manifold and relative representational distances for a repertoire of simple imagined movements were remarkably stable. Interestingly, however, the manifold's absolute location demonstrated day-to-day drift. Strikingly, representational statistics, especially variance, could be flexibly regulated to increase discernability during BCI control without somatotopic changes. Discernability strengthened with practice and was specific to the BCI, demonstrating remarkable contextual specificity. Accounting for drift, and leveraging the flexibility of representations, allowed neuroprosthetic control of a robotic arm and hand for over 7 months without recalibration. Our study offers insight into how electrocorticography can both track representational statistics across long periods and allow long-term complex neuroprosthetic control.

2.
Nat Biotechnol ; 39(3): 326-335, 2021 03.
Article in English | MEDLINE | ID: mdl-32895549

ABSTRACT

Brain-computer interfaces (BCIs) enable control of assistive devices in individuals with severe motor impairments. A limitation of BCIs that has hindered real-world adoption is poor long-term reliability and lengthy daily recalibration times. To develop methods that allow stable performance without recalibration, we used a 128-channel chronic electrocorticography (ECoG) implant in a paralyzed individual, which allowed stable monitoring of signals. We show that long-term closed-loop decoder adaptation, in which decoder weights are carried across sessions over multiple days, results in consolidation of a neural map and 'plug-and-play' control. In contrast, daily reinitialization led to degradation of performance with variable relearning. Consolidation also allowed the addition of control features over days, that is, long-term stacking of dimensions. Our results offer an approach for reliable, stable BCI control by leveraging the stability of ECoG interfaces and neural plasticity.


Subject(s)
Brain-Computer Interfaces , Adaptation, Physiological , Brain Mapping/methods , Electroencephalography/methods , Humans , Motor Cortex/physiology , Motor Cortex/physiopathology , Neuronal Plasticity , Paralysis/physiopathology , Psychomotor Performance , Self-Help Devices
3.
IEEE Trans Hum Mach Syst ; 50(4): 287-297, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33777542

ABSTRACT

Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a two-dimensional EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics (IBK) with a low-cost wireless EEG headset. We evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post- BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram (EOG) on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI.

4.
J Neural Eng ; 16(1): 011001, 2019 02.
Article in English | MEDLINE | ID: mdl-30523919

ABSTRACT

Advances in brain science and computer technology in the past decade have led to exciting developments in brain-computer interface (BCI), thereby making BCI a top research area in applied science. The renaissance of BCI opens new methods of neurorehabilitation for physically disabled people (e.g. paralyzed patients and amputees) and patients with brain injuries (e.g. stroke patients). Recent technological advances such as wireless recording, machine learning analysis, and real-time temporal resolution have increased interest in electroencephalographic (EEG) based BCI approaches. Many BCI studies have focused on decoding EEG signals associated with whole-body kinematics/kinetics, motor imagery, and various senses. Thus, there is a need to understand the various experimental paradigms used in EEG-based BCI systems. Moreover, given that there are many available options, it is essential to choose the most appropriate BCI application to properly manipulate a neuroprosthetic or neurorehabilitation device. The current review evaluates EEG-based BCI paradigms regarding their advantages and disadvantages from a variety of perspectives. For each paradigm, various EEG decoding algorithms and classification methods are evaluated. The applications of these paradigms with targeted patients are summarized. Finally, potential problems with EEG-based BCI systems are discussed, and possible solutions are proposed.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Communication Aids for Disabled , Electroencephalography/methods , Brain-Computer Interfaces/trends , Communication Aids for Disabled/trends , Electroencephalography/trends , Evoked Potentials, Visual/physiology , Humans , Neurological Rehabilitation/methods , Neurological Rehabilitation/trends
5.
IEEE J Biomed Health Inform ; 23(6): 2475-2482, 2019 11.
Article in English | MEDLINE | ID: mdl-30640636

ABSTRACT

A brain-computer interface (BCI) platform can be utilized by a user to control an external device without making any overt movements. An EEG-based computer cursor control task is commonly used as a testbed for BCI applications. While traditional computer cursor control schemes are based on sensorimotor rhythm, a new scheme has recently been developed using imagined body kinematics (IBK) to achieve natural cursor movement in a shorter time of training. This article attempts to explore optimal decoding algorithms for an IBK paradigm using EEG signals with application to neural cursor control. The study is based on an offline analysis of 32 healthy subjects' training data. Various machine learning techniques were implemented to predict the kinematics of the computer cursor using EEG signals during the training tasks. Our results showed that a linear regression least squares model yielded the highest goodness-of-fit scores in the cursor kinematics model (70% in horizontal prediction and 40% in vertical prediction using a Theil-Sen regressor). Additionally, the contribution of each EEG channel on the predictability of cursor kinematics was examined for horizontal and vertical directions, separately. A directional classifier was also proposed to classify horizontal versus vertical cursor kinematics using EEG signals. By incorporating features extracted from specific frequency bands, we achieved 80% classification accuracy in differentiating horizontal and vertical cursor movements. The findings of the current study could facilitate a pathway to designing an optimized online neural cursor control.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/methods , Signal Processing, Computer-Assisted , Adult , Algorithms , Brain/physiology , Female , Humans , Imagination/physiology , Male , Models, Statistical , Regression Analysis , Young Adult
6.
Front Aging Neurosci ; 9: 52, 2017.
Article in English | MEDLINE | ID: mdl-28348527

ABSTRACT

Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of brain activity to enhance brain function and behavioral performance. Recent advances in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools and evidence that NF improves cognitive functions, such as attention and working memory (WM), beyond what is provided by traditional CT. More published studies have demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity disorder (ADHD) in children. In contrast, there have been fewer studies done in older adults with or without cognitive impairment, with some notable exceptions. The focus of this review is to summarize current success in RT NF training of older brains aiming to match those of younger brains during attention/WM tasks. We also outline potential future advances in RT brainwave-based NF for improving attention training in older populations. The rapid growth in wireless recording of brain activity, machine learning classification and brain network analysis provides new tools for combating cognitive decline and brain aging in older adults. We optimistically conclude that NF, combined with new neuro-markers (event-related potentials and connectivity) and traditional features, promises to provide new hope for brain and CT in the growing older population.

SELECTION OF CITATIONS
SEARCH DETAIL