ABSTRACT
Purpose of the study: Macrolide therapy is effective in reducing chronic obstructive pulmonary disease (COPD) exacerbations. Our recent study has shown the effectiveness of taking azithromycin in COPD patients, not only ex-smokers but also current smokers. Beyond their anti-microbial effects, macrolides have anti-inflammatory and immunomodulatory properties. The aim of this study was to determine if pretreatment with azithromycin modulates cigarette smoke-induced inflammation in airway epithelial cells. We hypothesized that pretreatment with azithromycin decreases exacerbation frequency by modulating inflammation in human airway epithelial cells exposed to cigarette smoke. Materials and methods: BEAS-2B bronchial epithelial cells were incubated with 5% cigarette smoke extract (CSE) for 3 h, 6 h, and 24 h. Then, airway epithelial cells were pretreated with azithromycin and exposed to 5% CSE. In each stage, the expression and release of IL-6 and IL-8 mRNA were analyzed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results: There was a significant increase of IL-6 and IL-8 mRNA, as well as an increase in extracellular IL-8 protein following exposure to 5% CSE. When cells were pretreated with azithromycin and exposed to 5% CSE for 3 h, there was a significant dose-dependent decrease in the expression of IL-6 mRNA. A final concentration of 9 µg/mL of azithromycin was sufficient to decrease IL-6, IL-8 mRNA, and extracellular IL-8 levels. Conclusion: Pretreatment with azithromycin decreased the expression of IL-6 and IL-8 mRNA and the release of IL-8 in bronchial epithelial cells exposed to cigarette smoke. These results demonstrate the direct effect of azithromycin on inflammatory mediators in bronchial epithelial cells exposed to cigarette smoke.
Subject(s)
Azithromycin , Pulmonary Disease, Chronic Obstructive , Azithromycin/pharmacology , Bronchi , Epithelial Cells , Humans , Inflammation Mediators , Smoke/adverse effects , SmokingABSTRACT
E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).
Subject(s)
Inhalation Exposure/adverse effects , Lung/pathology , Vaping/adverse effects , Cells/pathology , Cigarette Smoking/adverse effects , Humans , Lung Diseases/etiologyABSTRACT
Bone repair after trauma or surgical intervention involves a tightly regulated cascade of events that starts with hemostasis and an inflammatory response, which are critical for successful healing. Nonsteroidal anti-inflammatory drugs (NSAID) are routinely prescribed for pain relief despite their potential inhibitory effect on bone repair. The goal of this study was to determine the impact of administration of the non-selective NSAID diclofenac in the inflammatory phase of bone repair in mice with or without lipopolysaccharide-induced systemic inflammation. Repair of femoral window defects was characterized using micro computed tomography imaging and histological analyses at 2 weeks postoperative. The data indicate (a) impaired bone regeneration associated with reduced osteoblast, osteoclast, and macrophage activity; (b) changes in the number, activity, and distribution of mast cells in regenerating bone; and (c) impaired angiogenesis due to a direct toxic effect of diclofenac on vascular endothelial cells. The results of this study provide strong evidence to support the conjecture that administration of NSAIDs in the first 2 weeks after orthopaedic surgery disrupts the healing cascade and exacerbates the negative effects of systemic inflammation on the repair process.
Subject(s)
Diclofenac/pharmacology , Inflammation/drug therapy , Pain/drug therapy , Wounds and Injuries/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Endothelial Cells/drug effects , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Macrophages/drug effects , Male , Mice , Orthopedic Procedures/adverse effects , Osteoblasts/drug effects , Osteoclasts/drug effects , Pain/diagnostic imaging , Pain/pathology , Wounds and Injuries/complications , Wounds and Injuries/diagnostic imaging , Wounds and Injuries/pathology , X-Ray MicrotomographyABSTRACT
Introduction: Self-management interventions with Written Action Plans and case management support have been shown to improve outcomes in patients with chronic obstructive pulmonary disease (COPD). Novel telehealth technologies may improve self-management interventions. The objectives of this study were to determine whether the use of an interactive phone telesystem increases Action Plan adherence, improves exacerbation recovery and reduces healthcare use in a real-life practice of a COPD clinic. Methods: Initially, 40 patients were followed by a COPD telesystem for 1 year. Detailed data from patients' behaviours during exacerbations was recorded. The telesystem use was then extended to 256 patients from a real-life COPD clinic. Healthcare utilisation for the year before and after telesystem enrolment was then assessed through hospital administrative databases. Results: Thirty-three of the 40 patients completed the initial 1-year study. Eighty-one exacerbations were reported in the 1-year follow-up. Action Plan adherence was observed for 72% of the exacerbations and those who were adherent had a significantly faster exacerbation recovery time. The large-scale implementation of the telesystem resulted in a significant decrease in the proportion of patients with ≥1 respiratory-related emergency room (ER) visits (120 before vs 110 after enrolment, p<0.001) and with ≥1 COPD-related hospitalisations (75 before vs 65 after enrolment, p<0.001). Discussion: COPD Written Action Plan adherence was further enhanced with the use of telehealth technologies in a specialised clinic with experience in COPD self-management. Patients followed by the telesystem recovered faster from exacerbations and had a further decrease in COPD-related ER visits and hospitalisations. Trial registration number: NCT02275078.
Subject(s)
Case Management , Patient Compliance/statistics & numerical data , Pulmonary Disease, Chronic Obstructive/therapy , Self-Management/methods , Telemedicine/methods , Aged , Feasibility Studies , Female , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pilot Projects , Quality of Life , Self-Management/statistics & numerical data , Symptom Flare Up , Telephone , Treatment OutcomeABSTRACT
Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development.
ABSTRACT
In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.