Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS Pathog ; 18(1): e1010176, 2022 01.
Article in English | MEDLINE | ID: mdl-35007290

ABSTRACT

COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.


Subject(s)
COVID-19/microbiology , Cytokine Release Syndrome/complications , Cytokines/metabolism , Monocytes/virology , Neutrophils/virology , COVID-19/virology , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/virology , Humans , Lymphocytes/immunology , Lymphocytes/microbiology , Lymphocytes/virology , Monocytes/immunology , Monocytes/microbiology , Neutrophils/immunology , Neutrophils/microbiology , SARS-CoV-2/pathogenicity
2.
Euro Surveill ; 29(2)2024 Jan.
Article in English | MEDLINE | ID: mdl-38214079

ABSTRACT

BackgroundWomen are overrepresented among individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Biological (sex) as well as sociocultural (gender) differences between women and men might account for this imbalance, yet their impact on PASC is unknown.AimWe assessed the impact of sex and gender on PASC in a Swiss population.MethodOur multicentre prospective cohort study included 2,856 (46% women, mean age 44.2 ± 16.8 years) outpatients and hospitalised patients with PCR-confirmed SARS-CoV-2 infection.ResultsAmong those who remained outpatients during their first infection, women reported persisting symptoms more often than men (40.5% vs 25.5% of men; p < 0.001). This sex difference was absent in hospitalised patients. In a crude analysis, both female biological sex (RR = 1.59; 95% CI: 1.41-1.79; p < 0.001) and a score summarising gendered sociocultural variables (RR = 1.05; 95% CI: 1.03-1.07; p < 0.001) were significantly associated with PASC. Following multivariable adjustment, biological female sex (RR = 0.96; 95% CI: 0.74-1.25; p = 0.763) was outperformed by feminine gender-related factors such as a higher stress level (RR = 1.04; 95% CI: 1.01-1.06; p = 0.003), lower education (RR = 1.16; 95% CI: 1.03-1.30; p = 0.011), being female and living alone (RR = 1.91; 95% CI: 1.29-2.83; p = 0.001) or being male and earning the highest income in the household (RR = 0.76; 95% CI: 0.60-0.97; p = 0.030).ConclusionSpecific sociocultural parameters that differ in prevalence between women and men, or imply a unique risk for women, are predictors of PASC and may explain, at least in part, the higher incidence of PASC in women. Once patients are hospitalised during acute infection, sex differences in PASC are no longer evident.


Subject(s)
COVID-19 , Female , Humans , Male , Adult , Middle Aged , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Switzerland/epidemiology , Prospective Studies , SARS-CoV-2 , Disease Progression
3.
Antimicrob Agents Chemother ; 66(1): e0096721, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34694884

ABSTRACT

Antibiotic-tolerant Staphylococcus aureus poses a great challenge to clinicians as well as to microbiological laboratories and is one reason for treatment failure. Antibiotic-tolerant strains survive transient antibiotic exposure despite being fully susceptible in vitro. Thus, fast and reliable methods to detect tolerance in the routine microbiology laboratory are urgently required. We therefore evaluated the feasibility of the replica plating tolerance isolation system (REPTIS) to detect antibiotic tolerance in Staphylococcus aureus isolates derived directly from patients suffering from different types of infections and investigated possible connections to clinical presentations and patient characteristics. One hundred twenty-five S. aureus isolates were included. Replica plating of the original resistance testing plate was used to assess regrowth in the zones of inhibition, indicating antibiotic tolerance. Bacterial regrowth was assessed after 24 and 48 h of incubation, and an overall regrowth score (ORS) was assigned. Regrowth scores were compared to the clinical presentation. Bacterial regrowth was high for most antibiotics targeting protein synthesis and relatively low for antibiotics targeting other cellular functions such as DNA replication, transcription, and cell wall synthesis, with the exception of rifampin. Isolates with a blaZ penicillinase had lower regrowth in penicillin and ampicillin. Low ORSs were more prevalent among isolates recovered from patients with immunosuppression or methicillin-resistant S. aureus (MRSA) isolates. In conclusion, REPTIS is useful to detect antibiotic tolerance in clinical microbiological routine diagnostics. Further studies should evaluate the impact of rapid detection of antibiotic tolerance as a clinical decision-making tool for tailored antibiotic treatments.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus
4.
Crit Care Med ; 49(4): 661-670, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33405410

ABSTRACT

OBJECTIVES: In this study, we hypothesized that coronavirus disease 2019 patients exhibit sublingual microcirculatory alterations caused by inflammation, coagulopathy, and hypoxemia. DESIGN: Multicenter case-controlled study. SETTING: Two ICUs in The Netherlands and one in Switzerland. PATIENTS: Thirty-four critically ill coronavirus disease 2019 patients were compared with 33 healthy volunteers. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The microcirculatory parameters quantified included total vessel density (mm × mm-2), functional capillary density (mm × mm-2), proportion of perfused vessels (%), capillary hematocrit (%), the ratio of capillary hematocrit to systemic hematocrit, and capillary RBC velocity (µm × s-1). The number of leukocytes in capillary-postcapillary venule units per 4-second image sequence (4 s-1) and capillary RBC microaggregates (4 s-1) was measured. In comparison with healthy volunteers, the microcirculation of coronavirus disease 2019 patients showed increases in total vessel density (22.8 ± sd 5.1 vs 19.9 ± 3.3; p < 0.0001) and functional capillary density (22.2 ± 4.8 vs 18.8 ± 3.1; p < 0.002), proportion of perfused vessel (97.6 ± 2.1 vs 94.6 ± 6.5; p < 0.01), RBC velocity (362 ± 48 vs 306 ± 53; p < 0.0001), capillary hematocrit (5.3 ± 1.3 vs 4.7 ± 0.8; p < 0.01), and capillary-hematocrit-to-systemic-hematocrit ratio (0.18 ± 0.0 vs 0.11 ± 0.0; p < 0.0001). These effects were present in coronavirus disease 2019 patients with Sequential Organ Failure Assessment scores less than 10 but not in patients with Sequential Organ Failure Assessment scores greater than or equal to 10. The numbers of leukocytes (17.6 ± 6.7 vs 5.2 ± 2.3; p < 0.0001) and RBC microaggregates (0.90 ± 1.12 vs 0.06 ± 0.24; p < 0.0001) was higher in the microcirculation of the coronavirus disease 2019 patients. Receiver-operating-characteristics analysis of the microcirculatory parameters identified the number of microcirculatory leukocytes and the capillary-hematocrit-to-systemic-hematocrit ratio as the most sensitive parameters distinguishing coronavirus disease 2019 patients from healthy volunteers. CONCLUSIONS: The response of the microcirculation to coronavirus disease 2019-induced hypoxemia seems to be to increase its oxygen-extraction capacity by increasing RBC availability. Inflammation and hypercoagulation are apparent in the microcirculation by increased numbers of leukocytes and RBC microaggregates.


Subject(s)
COVID-19/mortality , Capillaries , Hypoxia/etiology , Leukocytes , Microcirculation/physiology , Erythrocytes , Female , Humans , Male , Middle Aged
5.
J Intensive Care Med ; 36(10): 1184-1193, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34098803

ABSTRACT

BACKGROUND: Lung-protective ventilation is key in bridging patients suffering from COVID-19 acute respiratory distress syndrome (ARDS) to recovery. However, resource and personnel limitations during pandemics complicate the implementation of lung-protective protocols. Automated ventilation modes may prove decisive in these settings enabling higher degrees of lung-protective ventilation than conventional modes. METHOD: Prospective study at a Swiss university hospital. Critically ill, mechanically ventilated COVID-19 ARDS patients were allocated, by study-blinded coordinating staff, to either closed-loop or conventional mechanical ventilation, based on mechanical ventilator availability. Primary outcome was the overall achieved percentage of lung-protective ventilation in closed-loop versus conventional mechanical ventilation, assessed minute-by-minute, during the initial 7 days and overall mechanical ventilation time. Lung-protective ventilation was defined as the combined target of tidal volume <8 ml per kg of ideal body weight, dynamic driving pressure <15 cmH2O, peak pressure <30 cmH2O, peripheral oxygen saturation ≥88% and dynamic mechanical power <17 J/min. RESULTS: Forty COVID-19 ARDS patients, accounting for 1,048,630 minutes (728 days) of cumulative mechanical ventilation, allocated to either closed-loop (n = 23) or conventional ventilation (n = 17), presenting with a median paO2/ FiO2 ratio of 92 [72-147] mmHg and a static compliance of 18 [11-25] ml/cmH2O, were mechanically ventilated for 11 [4-25] days and had a 28-day mortality rate of 20%. During the initial 7 days of mechanical ventilation, patients in the closed-loop group were ventilated lung-protectively for 65% of the time versus 38% in the conventional group (Odds Ratio, 1.79; 95% CI, 1.76-1.82; P < 0.001) and for 45% versus 33% of overall mechanical ventilation time (Odds Ratio, 1.22; 95% CI, 1.21-1.23; P < 0.001). CONCLUSION: Among critically ill, mechanically ventilated COVID-19 ARDS patients during an early highpoint of the pandemic, mechanical ventilation using a closed-loop mode was associated with a higher degree of lung-protective ventilation than was conventional mechanical ventilation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Tidal Volume
6.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493302

ABSTRACT

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Subject(s)
Anti-Bacterial Agents/pharmacology , COVID-19/microbiology , Gram-Negative Bacteria/drug effects , Respiratory System/microbiology , COVID-19/complications , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Microbial Sensitivity Tests , Pneumonia, Ventilator-Associated/microbiology , Prospective Studies , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , SARS-CoV-2/isolation & purification , Switzerland
7.
J Colloid Interface Sci ; 650(Pt A): 560-572, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37429163

ABSTRACT

Despite the large number of synthesis methodologies described for superparamagnetic iron oxide nanoparticles (SPIONs), the search for their large-scale production for their widespread use in biomedical applications remains a mayor challenge. Flame Spray Pyrolysis (FSP) could be the solution to solve this limitation, since it allows the fabrication of metal oxide nanoparticles with high production yield and low manufacture costs. However, to our knowledge, to date such fabrication method has not been upgraded for biomedical purposes. Herein, SPIONs have been fabricated by FSP and their surface has been treated to be subsequently coated with dimercaptosuccinic acid (DMSA) to enhance their colloidal stability in aqueous media. The final material presents high quality in terms of nanoparticle size, homogeneous size distribution, long-term colloidal stability and magnetic properties. A thorough in vitro validation has been performed with peripheral blood cells and mesenchymal stem cells (hBM-MSCs). Specifically, hemocompatibility studies show that these functionalized FSP-SPIONs-DMSA nanoparticles do not cause platelet aggregation or impair basal monocyte function. Moreover, in vitro biocompatibility assays show a dose-dependent cellular uptake while maintaining high cell viability values and cell cycle progression without causing cellular oxidative stress. Taken together, the results suggest that the FSP-SPIONs-DMSA optimized in this work could be a worthy alternative with the benefit of a large-scale production aimed at industrialization for biomedical applications.


Subject(s)
Magnetite Nanoparticles , Pyrolysis , Magnetic Iron Oxide Nanoparticles , Oxidative Stress , Succimer
8.
Front Immunol ; 13: 908211, 2022.
Article in English | MEDLINE | ID: mdl-35967370

ABSTRACT

To understand the pathophysiology of spondylodiscitis due to Staphylococcus aureus, an emerging infectious disease of the intervertebral disc (IVD) and vertebral body with a high complication rate, we combined clinical insights and experimental approaches. Clinical data and histological material of nine patients suffering from S. aureus spondylodiscitis were retrospectively collected at a single center. To mirror the clinical findings experimentally, we developed a novel porcine ex vivo model mimicking acute S. aureus spondylodiscitis and assessed the interaction between S. aureus and IVD cells within their native environment. In addition, the inflammatory features underlying this interaction were assessed in primary human IVD cells. Finally, mirroring the clinical findings, we assessed primary human neutrophils for their ability to respond to secreted inflammatory modulators of IVD cells upon the S. aureus challenge. Acute S. aureus spondylodiscitis in patients was characterized by tissue necrosis and neutrophil infiltration. Additionally, the presence of empty IVD cells' lacunae was observed. This was mirrored in the ex vivo porcine model, where S. aureus induced extensive IVD cell death, leading to empty lacunae. Concomitant engagement of the apoptotic and pyroptotic cell death pathways was observed in primary human IVD cells, resulting in cytokine release. Among the released cytokines, functionally intact neutrophil-priming as well as broad pro- and anti-inflammatory cytokines which are known for their involvement in IVD degeneration were found. In patients as well as ex vivo in a novel porcine model, S. aureus IVD infection caused IVD cell death, resulting in empty lacunae, which was accompanied by the release of inflammatory markers and recruitment of neutrophils. These findings offer valuable insights into the important role of inflammatory IVD cell death during spondylodiscitis and potential future therapeutic approaches.


Subject(s)
Discitis , Intervertebral Disc , Staphylococcal Infections , Animals , Cytokines/metabolism , Discitis/metabolism , Discitis/pathology , Humans , Intervertebral Disc/metabolism , Neutrophils/metabolism , Retrospective Studies , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Swine
9.
Diagn Progn Res ; 6(1): 22, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36384641

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic demands reliable prognostic models for estimating the risk of long COVID. We developed and validated a prediction model to estimate the probability of known common long COVID symptoms at least 60 days after acute COVID-19. METHODS: The prognostic model was built based on data from a multicentre prospective Swiss cohort study. Included were adult patients diagnosed with COVID-19 between February and December 2020 and treated as outpatients, at ward or intensive/intermediate care unit. Perceived long-term health impairments, including reduced exercise tolerance/reduced resilience, shortness of breath and/or tiredness (REST), were assessed after a follow-up time between 60 and 425 days. The data set was split into a derivation and a geographical validation cohort. Predictors were selected out of twelve candidate predictors based on three methods, namely the augmented backward elimination (ABE) method, the adaptive best-subset selection (ABESS) method and model-based recursive partitioning (MBRP) approach. Model performance was assessed with the scaled Brier score, concordance c statistic and calibration plot. The final prognostic model was determined based on best model performance. RESULTS: In total, 2799 patients were included in the analysis, of which 1588 patients were in the derivation cohort and 1211 patients in the validation cohort. The REST prevalence was similar between the cohorts with 21.6% (n = 343) in the derivation cohort and 22.1% (n = 268) in the validation cohort. The same predictors were selected with the ABE and ABESS approach. The final prognostic model was based on the ABE and ABESS selected predictors. The corresponding scaled Brier score in the validation cohort was 18.74%, model discrimination was 0.78 (95% CI: 0.75 to 0.81), calibration slope was 0.92 (95% CI: 0.78 to 1.06) and calibration intercept was -0.06 (95% CI: -0.22 to 0.09). CONCLUSION: The proposed model was validated to identify COVID-19-infected patients at high risk for REST symptoms. Before implementing the prognostic model in daily clinical practice, the conduct of an impact study is recommended.

10.
BMJ Case Rep ; 14(5)2021 May 25.
Article in English | MEDLINE | ID: mdl-34035021

ABSTRACT

Nocardiosis is known to be an opportunistic infection most commonly affecting immunocompromised patients that can lead to life-threatening conditions. Primary cutaneous disease remains a rare manifestation and unlike pulmonary or disseminated nocardiosis, it usually affects immunocompetent individuals. We present a case of a primary cutaneous nocardiosis of the head and neck after an insect bite in a healthy 50-year-old woman who had recently travelled from Greece. She presented with a painful right-sided swelling of her face and neck and an ulcerated plaque over the right temple. Biopsy of the plaque revealed inflammation with abscess formation indicating underlying infection. Culture from the biopsy showed growth of Nocardia spp and 16S rRNA gene sequence analysis identified Nocardia brasiliensis The patient was treated with trimethoprim/sulfamethoxazole and subsequently switched to amoxicillin/clavulanic acid due to a drug eruption. Antibiotic therapy was continued for a total of 3 months with complete resolution of the skin lesions.


Subject(s)
Nocardia Infections , Nocardia , Skin Diseases, Bacterial , Female , Greece , Humans , Middle Aged , Nocardia/genetics , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , RNA, Ribosomal, 16S , Skin Diseases, Bacterial/diagnosis , Skin Diseases, Bacterial/drug therapy
11.
Cell Rep Med ; 2(4): 100229, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33748789

ABSTRACT

The impact of secondary bacterial infections (superinfections) in coronavirus disease 2019 (COVID-19) is not well understood. In this prospective, monocentric cohort study, we aim to investigate the impact of superinfections in COVID-19 patients with acute respiratory distress syndrome. Patients are assessed for concomitant microbial infections by longitudinal analysis of tracheobronchial secretions, bronchoalveolar lavages, and blood cultures. In 45 critically ill patients, we identify 19 patients with superinfections (42.2%). Superinfections are detected on day 10 after intensive care admission. The proportion of participants alive and off invasive mechanical ventilation at study day 28 (ventilator-free days [VFDs] at 28 days) is substantially lower in patients with superinfection (subhazard ratio 0.37; 95% confidence interval [CI] 0.15-0.90; p = 0.028). Patients with pulmonary superinfections have a higher incidence of bacteremia, virus reactivations, yeast colonization, and required intensive care treatment for a longer time. Superinfections are frequent and associated with reduced VFDs at 28 days despite a high rate of empirical antibiotic therapy.


Subject(s)
COVID-19/pathology , Respiration, Artificial , Superinfection/diagnosis , Aged , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/complications , COVID-19/virology , Cohort Studies , Critical Illness , Enterococcus faecalis/isolation & purification , Female , Humans , Incidence , Intensive Care Units , Length of Stay , Male , Middle Aged , Pseudomonas aeruginosa/isolation & purification , SARS-CoV-2/isolation & purification , Superinfection/complications , Superinfection/epidemiology , Time Factors
12.
Clin Transl Immunology ; 10(12): e1357, 2021.
Article in English | MEDLINE | ID: mdl-34938538

ABSTRACT

OBJECTIVES: Critically ill coronavirus disease 2019 (COVID-19) patients are characterised by a severely dysregulated cytokine profile and elevated neutrophil counts, impacting disease severity. However, it remains unclear how neutrophils contribute to pathophysiology during COVID-19. Here, we assessed the impact of the dysregulated cytokine profile on the regulated cell death (RCD) programme of neutrophils. METHODS: Regulated cell death phenotype of neutrophils isolated from critically ill COVID-19 patients or healthy donors and stimulated with COVID-19 or healthy plasma ex vivo was assessed by flow cytometry, time-lapse microscopy and cytokine multiplex analysis. Immunohistochemistry of COVID-19 patients and control biopsies were performed to assess the in situ neutrophil RCD phenotype. Plasma cytokine levels of COVID-19 patients and healthy donors were measured by multiplex analysis. Clinical parameters were correlated to cytokine levels of COVID-19 patients. RESULTS: COVID-19 plasma induced a necroptosis-sensitive neutrophil phenotype, characterised by cell lysis, elevated release of damage-associated molecular patterns (DAMPs), increased receptor-interacting serine/threonine-protein kinase (RIPK) 1 levels and mixed lineage kinase domain-like pseudokinase (MLKL) involvement. The occurrence of neutrophil necroptosis MLKL axis was further confirmed in COVID-19 thrombus and lung biopsies. Necroptosis was induced by the tumor necrosis factor receptor 1 (TNFRI)/TNF-α axis. Moreover, reduction of soluble Fas ligand (sFasL) levels in COVID-19 patients and hence decreased signalling to Fas directly increased RIPK1 levels, exacerbated TNF-driven necroptosis and correlated with disease severity, which was abolished in patients treated with glucocorticoids. CONCLUSION: Our results suggest a novel role for sFasL signalling in the TNF-α-induced RCD programme in neutrophils during COVID-19 and a potential therapeutic target to curb inflammation and thus influence disease severity and outcome.

13.
Oncotarget ; 6(8): 6459-69, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25749042

ABSTRACT

Infectious agents, including the BK polyomavirus (BKPyV), have been proposed as important inflammatory pathogens in prostate cancer. Here, we evaluated whether the preoperative antibody response to BKPyV large T antigen (LTag) and viral capsid protein 1 (VP1) was associated with the risk of biochemical recurrence in 226 patients undergoing radical prostatectomy for primary prostate cancer. Essentially, the multivariate Cox regression analysis revealed that preoperative seropositivity to BKPyV LTag significantly reduced the risk of biochemical recurrence, independently of established predictors of biochemical recurrence such as tumor stage, Gleason score and surgical margin status. The predictive accuracy of the regression model was denotatively increased by the inclusion of the BKPyV LTag serostatus. In contrast, the VP1 serostatus was of no prognostic value. Finally, the BKPyV LTag serostatus was associated with a peculiar cytokine gene expression profile upon assessment of the cellular immune response elicited by LTag. Taken together, our findings suggest that the BKPyV LTag serology may serve as a prognostic factor in prostate cancer. If validated in additional studies, this biomarker may allow for better treatment decisions after radical prostatectomy. Finally, the favorable outcome of LTag seropositive patients may provide a potential opportunity for novel therapeutic approaches targeting a viral antigen.


Subject(s)
BK Virus/immunology , Polyomavirus Infections/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/virology , Antibody Formation , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Prostatic Neoplasms/pathology
14.
Article in English | MEDLINE | ID: mdl-27107279

ABSTRACT

BACKGROUND: Latin America is characterized by a high prevalence of public stigma toward those with mental illness, and significant selfstigma among labeled individuals, leading to social exclusion, low treatment adherence, and diminished quality of life. However, there is no published evidence of an intervention designed to address stigma in the region. In light of this, a psychosocial intervention to reduce self-stigma among users with severe mental illness was developed and tested through an RCT in two regions of Chile. OBJECTIVES: To describe the development of the psychosocial intervention, assess its feasibility and acceptability, and evaluate its preliminary impact. METHODS: An intervention was designed and is being tested, with 80 users with severe mental illness attending two community mental health outpatient centers. To prepare the intervention, pertinent literature was reviewed, and experts and mental health services users were consulted. Feasibility and acceptability were assessed, and impact was analyzed, based on follow-up qualitative reports by the participants. RESULTS: The recovery-oriented, ten-session group intervention incorporates the Tree of Life narrative approach, along with other narrative practices, to promote a positive identity change in users, and constructivist psychoeducation, based on case studies and group discussions, to gather tools to confront self-stigma. The intervention was feasible to implement and well evaluated by participants, family members, and center professionals. Participants reported increased self-confidence, and the active use of anti-stigma strategies developed during the workshop. CONCLUSIONS: This group intervention promises an effective means to reduce stigma of mental illness within Chile and other Latin American countries and feasibility to scale up within mental health services.


Subject(s)
Mental Disorders/psychology , Outpatients/psychology , Psychotherapy/methods , Self Concept , Social Stigma , Stereotyping , Adolescent , Adult , Chile , Community Mental Health Centers , Female , Humans , Male , Mental Disorders/prevention & control , Mental Health Services , Middle Aged , Quality of Life , Reproducibility of Results , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL