ABSTRACT
BACKGROUND: Targeted immunotherapy is mostly associated with cancer treatment wherein designed molecules engage signaling pathways and mutant proteins critical to the survival of the cell. One of several genetic approaches is the use of in silico methods to develop immune epitopes targeting specific antigenic regions on related mutant proteins. In a recent study we showed a functional association between the gamma retrovirus HERV-H Long Terminal Associating (HHLA1, HHLA2 and HHLA3) proteins and melanoma associated antigen of the B class proteins (MAGEB5), with a resultant decrease in expression of HLA class I and II immune variants. HLA-C and HLA-DRB5 were the main HLA class I and II Immune variants, respectively, that showed expression changes across viral samples of interest. Specific immune variants for HLA-C and HLA-DRB5 were filtered for the top ten based on their relative frequency of counts across the samples. RESULTS: Protein variants for HHLA1, HHLA2, HHLA3 and MAGEB5 were used to predict antigenic epitope peptides to immune peptide-MHC class I and II binding using artificial neural networks. For IC50 peptide scores (PS) ≥ 0.5 with a transformed binding ability between 0 and 1, the top 5 epitopes identified for all targeted genes HHLA1,2 & 3 and MAGEB5 were qualified as strong or weak binders according to the threshold. Domain analysis using NCBI Conserved Domain Database (CDD) identified HHLA2 with immunoglobulin-like domains (Ig_C1-set) and MAGEB5 with the MAGE Homology Domain (MHD). Linear regression showed a statistical correlation (P < 0.001) for HHLA2 and MAGEB5 predicted epitope peptides to HLA-C but not HLA-DRB5. The prediction model identified HLA-C variant 9 (HLA-C9, BAA08825.1 HLA-B*1511) at 1.1% as the most valuable immune target for clinical considerations. Identification of the 9-mer epitope peptide within the domain showed for HHLA2: YANRTSLFY (PS = 0.5837) and VLAYYLSSSQNTIIN (PS = 0.77) for HLA-C and HLA-DRB5, respectively and for MAGEB5, peptides: FVRLTYLEY (PS = 0.5293) and YPAHYQFLWGPRAYT (PS = 0.62) for HLA-C and HLA-DRB5, respectively. CONCLUSION: Specific immune responses to targeted epitope peptides and their prediction models, suggested co-expression and co-evolution for HHLA2 and MAGEB5 in viral related diseases. HHLA2 and MAGEB5 could be considered markers for virus related tumors and targeted therapy for oncogenic diseases.
Subject(s)
Antigens, Neoplasm/metabolism , Epitopes, T-Lymphocyte/immunology , Immunoglobulins/immunology , Immunotherapy/methods , Melanoma/immunology , Neoplasm Proteins/metabolism , Retroviridae Infections/immunology , Retroviridae/physiology , Antigens, Neoplasm/genetics , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Evolution, Molecular , Gene Expression Regulation , Genetic Association Studies , HLA Antigens/genetics , HLA-C Antigens/genetics , HLA-DRB5 Chains/genetics , Humans , Immunoglobulins/genetics , Melanoma/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Polymorphism, GeneticABSTRACT
Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.
ABSTRACT
Introduction: There is a great need to find alternative treatments for chronic pain which have become a healthcare problem. We discuss current therapeutic targeting Nav1.7. Areas Covered: Nav1.7 is a sodium ion channel protein that is associated with several human pain genetic syndromes. It has been found that mutations associated with Nav1.7 lead to the loss of the ability to perceive pain in individuals that are otherwise normal. Several therapeutic interventions are presently undergoing preclinical and research using the methodology of damping Nav1.7 expressions as a methodology to decrease the sensation of pain leading to analgesia. Expert Opinion: It is our strong belief that there is a viable future in the targeting of protein of Nav1.7 for the relief of chronic pain in humans. The review will look at the genomics associated with SCN1A and proteomic of Nav1.7 as a foundation to explain the mechanism of the therapeutic interventions targeting Nav1.7, the human disease that are associated with Nav1.7, and the current development of treatment for chronic pain whether in preclinical or clinical trials targeting Nav1.7 expressions. The development of therapeutic antagonists targeting Nav1.7 could be a viable alternative to the current treatments which have led to the opioid crisis. Therefore, Nav1.7 targeted treatment has a major clinical significance that will have positive consequences as it relates to chronic pain interventions.