Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121846

ABSTRACT

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Subject(s)
Cellular Senescence , Humans , Animals , Biomarkers/metabolism , Guidelines as Topic , Neoplasms/pathology
2.
Cell ; 186(2): 233-235, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36669469

ABSTRACT

Reactivation of endogenous retroviruses (ERVs), the relics of ancient infections, has been implicated in a number of disease contexts. In this issue of Cell, Liu et al. show how reactivation of ERVs in old age can induce senescence. This awakening of ERVs is associated with their epigenetic derepression and contributes to age-associated chronic inflammation.


Subject(s)
Aging , Endogenous Retroviruses , Endogenous Retroviruses/genetics , Aging/genetics , Aging/pathology , Inflammation
3.
Cell ; 184(22): 5506-5526, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34715021

ABSTRACT

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Subject(s)
Aging/metabolism , Cytoplasm/metabolism , DNA/metabolism , Disease , Animals , Humans , Micronucleus, Germline/metabolism , Retroelements/genetics
4.
Cell ; 179(4): 813-827, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675495

ABSTRACT

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Subject(s)
Aging/genetics , Biomarkers , Cellular Senescence/genetics , Genetic Diseases, Inborn/genetics , Cell Cycle Checkpoints/genetics , Chromatin/genetics , Gene Expression Regulation/genetics , Genetic Diseases, Inborn/therapy , Humans
5.
Cell ; 177(3): 572-586.e22, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955884

ABSTRACT

Drug resistance and relapse remain key challenges in pancreatic cancer. Here, we have used RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and genome-wide CRISPR analysis to map the molecular dependencies of pancreatic cancer stem cells, highly therapy-resistant cells that preferentially drive tumorigenesis and progression. This integrated genomic approach revealed an unexpected utilization of immuno-regulatory signals by pancreatic cancer epithelial cells. In particular, the nuclear hormone receptor retinoic-acid-receptor-related orphan receptor gamma (RORγ), known to drive inflammation and T cell differentiation, was upregulated during pancreatic cancer progression, and its genetic or pharmacologic inhibition led to a striking defect in pancreatic cancer growth and a marked improvement in survival. Further, a large-scale retrospective analysis in patients revealed that RORγ expression may predict pancreatic cancer aggressiveness, as it positively correlated with advanced disease and metastasis. Collectively, these data identify an orthogonal co-option of immuno-regulatory signals by pancreatic cancer stem cells, suggesting that autoimmune drugs should be evaluated as novel treatment strategies for pancreatic cancer patients.


Subject(s)
Adenocarcinoma/pathology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Differentiation , Epigenesis, Genetic , Gene Library , Humans , Mice , Mice, Knockout , Mice, SCID , Neoplastic Stem Cells/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Interleukin-10/antagonists & inhibitors , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Tumor Cells, Cultured
6.
Mol Cell ; 84(17): 3271-3287.e8, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39178863

ABSTRACT

Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity. The HIRA histone H3.3 chaperone localizes to PML NBs in senescent cells. Here, we show that HIRA and PML are essential for SASP expression, tightly linked to HIRA's localization to PML NBs. Inactivation of HIRA does not directly block expression of nuclear factor κB (NF-κB) target genes. Instead, an H3.3-independent HIRA function activates SASP through a CCF-cGAS-STING-TBK1-NF-κB pathway. HIRA physically interacts with p62/SQSTM1, an autophagy regulator and negative SASP regulator. HIRA and p62 co-localize in PML NBs, linked to their antagonistic regulation of SASP, with PML NBs controlling their spatial configuration. These results outline a role for HIRA and PML in the regulation of SASP.


Subject(s)
Cell Cycle Proteins , Cellular Senescence , Histone Chaperones , Inflammation , NF-kappa B , Nuclear Proteins , Promyelocytic Leukemia Protein , Protein Serine-Threonine Kinases , Sequestosome-1 Protein , Signal Transduction , Transcription Factors , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagy , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , HEK293 Cells , Histone Chaperones/metabolism , Histone Chaperones/genetics , Histones/metabolism , Histones/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nucleotidyltransferases , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
7.
Nature ; 630(8016): 475-483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839958

ABSTRACT

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Subject(s)
Aging , Brain , Cellular Senescence , Drosophila melanogaster , Lipid Metabolism , Mitochondria , Neuroglia , Animals , Female , Humans , Male , Aging/metabolism , Aging/pathology , Brain/metabolism , Brain/pathology , Brain/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Longevity , Mitochondria/metabolism , Mitochondria/pathology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Transcription Factor AP-1/metabolism , Lipids , Inflammation/metabolism , Inflammation/pathology
8.
Nature ; 622(7983): 627-636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821702

ABSTRACT

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Subject(s)
Apoptosis , Cellular Senescence , Cytosol , DNA, Mitochondrial , Mitochondria , Animals , Mice , Cytosol/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Proof of Concept Study , Inflammation/metabolism , Phenotype , Longevity , Healthy Aging
9.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32001510

ABSTRACT

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Subject(s)
Cell Nucleus/pathology , Cellular Senescence/physiology , Chromatin/pathology , Cytoplasm/pathology , Mitochondria/pathology , Signal Transduction , Animals , Cell Nucleus/physiology , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Inflammation/physiopathology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
10.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30773298

ABSTRACT

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Subject(s)
Cell Proliferation , Cellular Senescence , Chromatin Assembly and Disassembly , Chromatin/enzymology , Fibroblasts/enzymology , Histones/metabolism , Protein Processing, Post-Translational , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Proliferation/genetics , Cellular Senescence/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Epigenetic Repression , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Histones/genetics , Humans , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Time Factors , Transcription, Genetic , p300-CBP Transcription Factors/genetics
11.
Blood ; 143(8): 697-712, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38048593

ABSTRACT

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Subject(s)
Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Homeodomain Proteins/genetics , Chromatin/genetics , Transcription Factors/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Carcinogenesis
12.
Mol Cell ; 71(6): 882-895, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241605

ABSTRACT

Age-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock. Here we consider the relationship between the chronological and biological clocks, their underlying mechanisms, potential consequences, and their utility as biomarkers and as targets for intervention to promote healthy aging and longevity.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , DNA Methylation/genetics , Animals , Biological Clocks/genetics , Cellular Senescence/physiology , CpG Islands/genetics , Epigenesis, Genetic/genetics , Humans , Longevity/genetics
13.
J Cell Sci ; 136(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37589340

ABSTRACT

Autophagy is a recycling mechanism involved in cellular homeostasis with key implications for health and disease. The conjugation of the ATG8 family proteins, which includes LC3B (also known as MAP1LC3B), to autophagosome membranes, constitutes a hallmark of the canonical autophagy process. After ATG8 proteins are conjugated to the autophagosome membranes via lipidation, they orchestrate a plethora of protein-protein interactions that support key steps of the autophagy process. These include binding to cargo receptors to allow cargo recruitment, association with proteins implicated in autophagosome transport and autophagosome-lysosome fusion. How these diverse and critical protein-protein interactions are regulated is still not well understood. Recent reports have highlighted crucial roles for post-translational modifications of ATG8 proteins in the regulation of ATG8 functions and the autophagy process. This Review summarizes the main post-translational regulatory events discovered to date to influence the autophagy process, mostly described in mammalian cells, including ubiquitylation, acetylation, lipidation and phosphorylation, as well as their known contributions to the autophagy process, physiology and disease.


Subject(s)
Autophagy , Protein Processing, Post-Translational , Animals , Autophagy-Related Protein 8 Family/genetics , Phosphorylation , Autophagosomes , Mammals
14.
EMBO Rep ; 24(10): e57927, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37650879

ABSTRACT

Epigenetic modifications are known to be crucial for hematopoietic stem cell (HSC) differentiation, with the BET family member BRD4 playing a vital role in this as an epigenetic reader. In this issue of EMBO reports, Yang et al (2023) demonstrate that the absence of BRD4 leads to senescence in HSCs and hematopoietic progenitor cells (HPCs), affecting the expression of crucial genes involved in myeloid and erythroid development. These data suggest that BRD4 has a protective role in preserving histone tails, thereby sustaining normal HSC/HPC functions.

17.
Mol Cell ; 61(2): 210-21, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26774282

ABSTRACT

Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids.


Subject(s)
Adenosine Triphosphate/biosynthesis , DNA Methylation , Methionine/metabolism , Neoplasms/metabolism , Serine/metabolism , Adenosine Monophosphate/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , DNA Methylation/drug effects , Homocysteine/pharmacology , Humans , RNA/metabolism , S-Adenosylmethionine/metabolism , Stress, Physiological/drug effects
18.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26833731

ABSTRACT

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Subject(s)
Cellular Senescence/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Signal Transduction/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line , Cell Proliferation , DNA Damage , Gene Knockdown Techniques , HEK293 Cells , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Humans , Inflammation/genetics , MCF-7 Cells , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , NF-kappa B/metabolism , Neoplasms/physiopathology , Phenotype
19.
EMBO J ; 38(23): e101982, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31633821

ABSTRACT

Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.


Subject(s)
Aging/pathology , Atrophy/pathology , Cellular Senescence , Melanocytes/pathology , Skin/pathology , Telomere/pathology , Adult , Aged , Aged, 80 and over , Aging/drug effects , Atrophy/chemically induced , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Epidermis/drug effects , Epidermis/pathology , Female , Humans , Male , Melanocytes/metabolism , Middle Aged , Paracrine Communication , Reactive Oxygen Species/metabolism , Receptors, CXCR4/metabolism , Skin/metabolism , Telomere/metabolism , Young Adult
20.
EMBO J ; 38(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30737259

ABSTRACT

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.


Subject(s)
Cardiomegaly/pathology , Cellular Senescence , DNA Damage , Fibrosis/pathology , Mitosis , Myocytes, Cardiac/pathology , Telomere Shortening , Aging , Animals , Cardiomegaly/etiology , Female , Fibrosis/etiology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monoamine Oxidase/physiology , Myocytes, Cardiac/metabolism , Phenotype , RNA/physiology , Rats, Sprague-Dawley , Telomerase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL