Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters

Publication year range
1.
Immunity ; 53(2): 442-455.e4, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32668194

ABSTRACT

We profiled adaptive immunity in COVID-19 patients with active infection or after recovery and created a repository of currently >14 million B and T cell receptor (BCR and TCR) sequences from the blood of these patients. The B cell response showed converging IGHV3-driven BCR clusters closely associated with SARS-CoV-2 antibodies. Clonality and skewing of TCR repertoires were associated with interferon type I and III responses, early CD4+ and CD8+ T cell activation, and counterregulation by the co-receptors BTLA, Tim-3, PD-1, TIGIT, and CD73. Tfh, Th17-like, and nonconventional (but not classical antiviral) Th1 cell polarizations were induced. SARS-CoV-2-specific T cell responses were driven by TCR clusters shared between patients with a characteristic trajectory of clonotypes and traceability over the disease course. Our data provide fundamental insight into adaptive immunity to SARS-CoV-2 with the actively updated repository providing a resource for the scientific community urgently needed to inform therapeutic concepts and vaccine development.


Subject(s)
Coronavirus Infections , Cytokines , High-Throughput Nucleotide Sequencing , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2 , Severity of Illness Index
2.
J Infect Dis ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195212

ABSTRACT

Licensed vaccines against the Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging pathogen of concern, are lacking. The Modified Vaccinia virus Ankara vector-based vaccine MVA-MERS-S, expressing the MERS-CoV-spike glycoprotein (MERS-S), is one of three candidate vaccines in clinical development and elicits robust humoral and cellular immunity. Here, we identified for the first time a MERS-S-specific CD8+ T-cell epitope in an HLA-A*03:01/HLA-B*35:01-positive vaccinee using a screening assay, intracellular cytokine staining, and in silico epitope prediction. As evidence from MERS-CoV infection suggests a protective role of long-lasting CD8+ T-cell responses, the identification of epitopes will facilitate longitudinal analyses of vaccine-induced T-cell immunity.

3.
Eur J Haematol ; 112(5): 788-793, 2024 May.
Article in English | MEDLINE | ID: mdl-38311570

ABSTRACT

OBJECTIVE: Preventing severe COVID-19 remains a priority globally, particularly in the immunocompromised population. As shown in healthy individuals, immunity against SARS-CoV-2 can be yielded by previous infection, vaccination, or both (hybrid immunity). The objective of this observation study was to investigate hybrid immunity in patients with chronic lymphocytic leukemia (CLL). METHODS/RESULTS: Blood samples of six patients with CLL were collected 55 days after fourth COVID-19 vaccination. All patients had a SARS-CoV-2 infection within 12 months before the second booster (fourth vaccination). SARS-CoV-2 spike receptor binding domain (RBD)-specific IgG antibodies were detectable in 6/6 (100.0%) CLL patients after four compared to 4/6 (66.7%) after three vaccinations. The median number of SARS-CoV-2 spike-specific T cells after repeated booster vaccination plus infection was 166 spot-forming cells (SFC) per million peripheral blood mononuclear cells. Overall, 5/5 (100%) studied patients showed a detectable increase in T cell activity. CONCLUSION: Our data reveal an increase of cellular and humoral immune response in CLL patients after fourth COVID-19 vaccination combined with SARS-CoV-2 infection, even in those undergoing B cell-depleting treatment. Patients with prior vaccination failure now show a specific IgG response. Future research should explore the duration and effectiveness of hybrid immunity considering various factors like past infection and vaccination rates, types and numbers of doses, and emerging variants.


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , SARS-CoV-2 , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , COVID-19 Vaccines , Leukocytes, Mononuclear , Immunoglobulin G , Postoperative Complications , Vaccination , Adaptive Immunity , Antibodies, Viral
4.
Infection ; 52(1): 285-288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38060068

ABSTRACT

Respiratory syncytial virus (RSV) inflicts severe illness and courses of infections not only in neonates, infants, and young children, but also causes significant morbidity and mortality in older adults and in people with immunosuppression, hemato-oncologic disease, chronic lung disease, or cardiovascular disease. In June and August 2023, effective vaccines against RSV were approved for the first time by the European Medicines Agency (EMA) for the EU. The respective pivotal studies showed a very high efficacy of the vaccine in preventing severe RSV-associated respiratory infections. At this point, use of the respective vaccines is restricted to persons aged 60 years or older, according to the registration studies. We therefore recommend use of the vaccination in persons aged 60 years or older. In addition, we recommend use of the vaccination in adults of any age with severe pulmonary or cardiovascular pre-existing conditions, as well as in adults with significant immune compromise, after individual consultation with the treating physician. Cost coverage can be applied for individually with the responsible health insurance company.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Aged , Humans , Lung , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/adverse effects , Vaccination , Middle Aged
5.
Infection ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700656

ABSTRACT

PURPOSE: The influence of new SARS-CoV-2 variants on the post-COVID-19 condition (PCC) remains unanswered. Therefore, we examined the prevalence and predictors of PCC-related symptoms in patients infected with the SARS-CoV-2 variants delta or omicron. METHODS: We compared prevalences and risk factors of acute and PCC-related symptoms three months after primary infection (3MFU) between delta- and omicron-infected patients from the Cross-Sectoral Platform of the German National Pandemic Cohort Network. Health-related quality of life (HrQoL) was determined by the EQ-5D-5L index score and trend groups were calculated to describe changes of HrQoL between different time points. RESULTS: We considered 758 patients for our analysis (delta: n = 341; omicron: n = 417). Compared with omicron patients, delta patients had a similar prevalence of PCC at the 3MFU (p = 0.354), whereby fatigue occurred most frequently (n = 256, 34%). HrQoL was comparable between the groups with the lowest EQ-5D-5L index score (0.75, 95% CI 0.73-0.78) at disease onset. While most patients (69%, n = 348) never showed a declined HrQoL, it deteriorated substantially in 37 patients (7%) from the acute phase to the 3MFU of which 27 were infected with omicron. CONCLUSION: With quality-controlled data from a multicenter cohort, we showed that PCC is an equally common challenge for patients infected with the SARS-CoV-2 variants delta and omicron at least for the German population. Developing the EQ-5D-5L index score trend groups showed that over two thirds of patients did not experience any restrictions in their HrQoL due to or after the SARS-CoV-2 infection at the 3MFU. CLINICAL TRAIL REGISTRATION: The cohort is registered at ClinicalTrials.gov since February 24, 2021 (Identifier: NCT04768998).

6.
J Infect Dis ; 228(5): 586-590, 2023 08 31.
Article in English | MEDLINE | ID: mdl-36857443

ABSTRACT

Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome (MERS)-associated coronavirus. Here, we report that cross-reactive monkeypox virus neutralizing antibodies were detectable in only a single study participant after the first dose of MVA-MERS-S vaccine, in 3 of 10 after the second dose, and in 10 of 10 after the third dose.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Humans , Broadly Neutralizing Antibodies , Spike Glycoprotein, Coronavirus , Monkeypox virus , Antibodies, Viral , Vaccinia virus/genetics , Coronavirus Infections/prevention & control , Antibodies, Neutralizing
7.
Eur J Immunol ; 52(2): 312-327, 2022 02.
Article in English | MEDLINE | ID: mdl-34752634

ABSTRACT

Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4+ and CD8+ T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4+ and the CD8+ T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8+ T cells with suppressive capacity. Importantly, we found an induction of T cells with a similar co-inhibitory rich phenotype in Plasmodium falciparum-infected patients. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted, but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.


Subject(s)
Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation/immunology , Immune Tolerance , Malaria, Falciparum/immunology , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Programmed Cell Death 1 Receptor/immunology , Adolescent , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Lymphocyte Activation Gene 3 Protein
8.
Eur J Immunol ; 52(8): 1297-1307, 2022 08.
Article in English | MEDLINE | ID: mdl-35416291

ABSTRACT

COVID-19, caused by SARS-CoV-2, has emerged as a global pandemic. While immune responses of the adaptive immune system have been in the focus of research, the role of NK cells in COVID-19 remains less well understood. Here, we characterized NK cell-mediated SARS-CoV-2 antibody-dependent cellular cytotoxicity (ADCC) against SARS-CoV-2 spike-1 (S1) and nucleocapsid (NC) protein. Serum samples from SARS-CoV-2 resolvers induced significant CD107a-expression by NK cells in response to S1 and NC, while serum samples from SARS-CoV-2-negative individuals did not. Furthermore, serum samples from individuals that received the BNT162b2 vaccine induced strong CD107a expression by NK cells that increased with the second vaccination and was significantly higher than observed in infected individuals. As expected, vaccine-induced responses were only directed against S1 and not against NC protein. S1-specific CD107a responses by NK cells were significantly correlated to NK cell-mediated killing of S1-expressing cells. Interestingly, screening of serum samples collected prior to the COVID-19 pandemic identified two individuals with cross-reactive antibodies against SARS-CoV-2 S1, which also induced degranulation of NK cells. Taken together, these data demonstrate that antibodies induced by SARS-CoV-2 infection and anti-SARS-CoV-2 vaccines can trigger significant NK cell-mediated ADCC activity, and identify some cross-reactive ADCC-activity against SARS-CoV-2 by endemic coronavirus-specific antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral/metabolism , Antibody-Dependent Cell Cytotoxicity , BNT162 Vaccine , Humans , Killer Cells, Natural , Pandemics
9.
Cytokine ; 162: 156109, 2023 02.
Article in English | MEDLINE | ID: mdl-36529029

ABSTRACT

The SARS-CoV-2 infection leads to enhanced inflammation driven by innate immune responses. Upon TLR7 stimulation, dendritic cells (DC) mediate the production of inflammatory cytokines, and in particular of type I interferons (IFN). Especially in DCs, IRF5 is a key transcription factor that regulates pathogen-induced immune responses via activation of the MyD88-dependent TLR signaling pathway. In the current study, the frequencies of IRF5+ DCs and the association with innate cytokine responses in SARS-CoV-2 infected individuals with different disease courses were investigated. In addition to a decreased number of mDC and pDC subsets, we could show reduced relative IRF5+ frequencies in mDCs of SARS-CoV-2 infected individuals compared with healthy donors. Functionally, mDCs of COVID-19 patients produced lower levels of IL-6 in response to in vitro TLR7 stimulation. IRF5+ mDCs more frequently produced IL-6 and TNF-α compared to their IRF5- counterparts upon TLR7 ligation. The correlation of IRF5+ mDCs with the frequencies of IL-6 and TNF-α producing mDCs were indicators for a role of IRF5 in the regulation of cytokine responses in mDCs. In conclusion, our data provide further insights into the underlying mechanisms of TLR7-dependent immune dysfunction and identify IRF5 as a potential immunomodulatory target in SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cytokines , Humans , Cytokines/metabolism , Toll-Like Receptor 7/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Interferon Regulatory Factors/metabolism , Dendritic Cells
10.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Article in English | MEDLINE | ID: mdl-37452829

ABSTRACT

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Subject(s)
COVID-19 , Primary Dysautonomias , Humans , COVID-19/complications , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , RNA, Viral , Endothelial Cells , Inflammation , Primary Dysautonomias/etiology , Vagus Nerve
11.
Eur J Neurol ; 30(8): 2297-2304, 2023 08.
Article in English | MEDLINE | ID: mdl-37159495

ABSTRACT

BACKGROUND AND PURPOSE: This study aimed to investigate if pre-existing neurological conditions, such as dementia and a history of cerebrovascular disease, increase the risk of severe outcomes including death, intensive care unit (ICU) admission and vascular events in patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2022, when Omicron was the predominant variant. METHODS: A retrospective analysis was conducted of all patients with SARS-CoV-2 infection, confirmed by polymerase chain reaction test, admitted to the University Medical Center Hamburg-Eppendorf from 20 December 2021 until 15 August 2022. In all, 1249 patients were included in the study. In-hospital mortality was 3.8% and the ICU admission rate was 9.9%. Ninety-three patients with chronic cerebrovascular disease and 36 patients with pre-existing all-cause dementia were identified and propensity score matching by age, sex, comorbidities, vaccination status and dexamethasone treatment was performed in a 1:4 ratio with patients without the respective precondition using nearest neighbor matching. RESULTS: Analysis revealed that neither pre-existing cerebrovascular disease nor all-cause dementia increased mortality or the risk for ICU admission. All-cause dementia in the medical history also had no effect on vascular complications under investigation. In contrast, an increased odds ratio for both pulmonary artery embolism and secondary cerebrovascular events was observed in patients with pre-existing chronic cerebrovascular disease and myocardial infarction in the medical history. CONCLUSION: These findings suggest that patients with pre-existing cerebrovascular disease and myocardial infarction in their medical history may be particularly susceptible to vascular complications following SARS-CoV-2 infection with presumed Omicron variant.


Subject(s)
COVID-19 , Cerebrovascular Disorders , Myocardial Infarction , Humans , Retrospective Studies , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Cerebrovascular Disorders/epidemiology
12.
Infection ; 51(5): 1569-1575, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37402112

ABSTRACT

PURPOSE: Bacterial pneumonia, a major cause of respiratory tract infections (RTI), can be challenging to diagnose and to treat adequately, especially when seasonal viral pathogens co-circulate. The aim of this study was to give a real-world snapshot of the burden of respiratory disease and treatment choices in the emergency department (ED) of a tertiary care hospital in Germany in the fall of 2022. METHODS: Anonymized analysis of a quality control initiative that prospectively documented all patients presenting to our ED with symptoms suggestive of RTI from Nov 7th to Dec 18th, 2022. RESULTS: 243 patients were followed at the time of their ED attendance. Clinical, laboratory and radiographic examination was performed in 92% of patients (224/243). Microbiological work-up to identify causative pathogens including blood cultures, sputum or urine-antigen tests were performed in 55% of patients (n = 134). Detection of viral pathogens increased during the study period from 7 to 31 cases per week, while bacterial pneumonias, respiratory tract infections without detection of a viral pathogen and non-infectious etiologies remained stable. A high burden of bacterial and viral co-infections became apparent (16%, 38/243), and co-administration of antibiotic and antiviral treatments was observed (14%, n = 35/243). 17% of patients (41/243) received antibiotic coverage without a diagnosis of a bacterial etiology. CONCLUSION: During the fall of 2022, the burden of RTI caused by detectable viral pathogens increased unusually early. Rapid and unexpected changes in pathogen distribution highlight the need for targeted diagnostics to improve the quality of RTI management in the ED.


Subject(s)
Influenza, Human , Pneumonia, Bacterial , Respiratory Tract Infections , Virus Diseases , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Tertiary Care Centers , Seasons , Virus Diseases/diagnosis , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Emergency Service, Hospital
13.
Infection ; 51(5): 1563-1568, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37273167

ABSTRACT

BACKGROUND: In May 2022, a multi-national mpox outbreak was reported in several non-endemic countries. The only licensed treatment for mpox in the European Union is the orally available small molecule tecovirimat, which in Orthopox viruses inhibits the function of a major envelope protein required for the production of extracellular virus. METHODS: We identified presumably all patients with mpox that were treated with tecovirimat in Germany between the onset of the outbreak in May 2022 and March 2023 and obtained demographic and clinical characteristics by standardized case report forms. RESULTS: A total of twelve patients with mpox were treated with tecovirimat in Germany in the study period. All but one patient identified as men who have sex with men (MSM) who were most likely infected with mpox virus (MPXV) through sexual contact. Eight of them were people living with HIV (PLWH), one of whom was newly diagnosed with HIV at the time of mpox, and four had CD4+ counts below 200/µl. Criteria for treatment with tecovirimat included severe immunosuppression, severe generalized and/or protracted symptoms, a high or increasing number of lesions, and the type and location of lesions (e.g., facial or oral soft tissue involvement, imminent epiglottitis, or tonsillar swelling). Patients were treated with tecovirimat for between six and 28 days. Therapy was generally well-tolerated, and all patients showed clinical resolution. CONCLUSIONS: In this cohort of twelve patients with severe mpox, treatment with tecovirimat was well tolerated and all individuals showed clinical improvement.


Subject(s)
HIV Infections , Mpox (monkeypox) , Sexual and Gender Minorities , Male , Humans , Homosexuality, Male , Germany/epidemiology , Benzamides
14.
Surg Endosc ; 37(3): 1830-1837, 2023 03.
Article in English | MEDLINE | ID: mdl-36229559

ABSTRACT

OBJECTIVES: Abdominal tuberculosis (TB) is a "great mimic," and diagnosis remains challenging even for experienced clinicians. While mini-laparoscopy has already been demonstrated to be an efficient diagnostic tool for a variety of diseases, we aimed to demonstrate the feasibility of this technique in diagnosing abdominal TB. METHODS: We retrospectively included patients who underwent mini-laparoscopy at the University Medical Center Hamburg-Eppendorf between April 2010 and January 2022 for suspected abdominal TB. Demographic, clinical, and laboratory data, radiological findings as well as macroscopic, histopathologic, and microbiologic results were analyzed by chart review. RESULTS: Out of 49 consecutive patients who underwent mini-laparoscopy for suspected abdominal TB, the diagnosis was subsequently confirmed in 29 patients (59%). Among those, the median age was 30 years (range 18-86 years) and the majority were male (n = 22, 76%). Microbiological diagnosis was established in a total of 16 patients. The remaining patients were diagnosed with abdominal TB either by histopathological detection of caseating granulomas (n = 3), or clinically by a combination of typical presentation, mini-laparoscopic findings, and good response to anti-tuberculous treatment (n = 10). Bleeding from the respective puncture site occurred in 19 patients (66%) and either resolved spontaneously or was arrested with argon plasma coagulation alone (n = 10) or in combination with fibrin glue (n = 1). Minor intestinal perforation occurred in 2 patients and was treated conservatively. CONCLUSIONS: Mini-laparoscopy is a useful and safe modality for the diagnosis of abdominal TB.


Subject(s)
Laparoscopy , Peritonitis, Tuberculous , Tuberculosis, Gastrointestinal , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Tuberculosis, Gastrointestinal/diagnosis , Tuberculosis, Gastrointestinal/drug therapy , Tuberculosis, Gastrointestinal/surgery , Abdomen , Laparoscopy/methods , Peritonitis, Tuberculous/diagnosis , Peritonitis, Tuberculous/surgery
15.
J Ment Health ; 32(6): 1111-1121, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35549625

ABSTRACT

BACKGROUND: Literature investigating the impact of COVID-19 on healthcare professionals barely addresses predictors of somatic symptom burden during the COVID-19 pandemic. AIMS: As biopsychosocial models propose that not only the disease but also sociodemographic and psychosocial factors contribute to the development and maintenance of symptoms, this study investigates the predictive value of these factors for bothersome somatic symptoms in SARS-CoV-2 negative healthcare professionals. METHODS: German healthcare professionals were assessed with self-rating questionnaires and underwent SARS-CoV-2 IgG antibody tests at baseline and 8 weeks later between April and August 2020. Differences in psychosocial variables between the time points were analyzed and regression analyses were performed to predict somatic symptoms at follow-up. RESULTS: 1185 seronegative healthcare professionals completed both assessments. Previous somatic symptom burden, higher levels of anxiety, being a nurse, younger age, higher psychological symptom burden, lower efficiency, and higher fatigability at baseline predicted somatic symptom burden at follow-up. Comparisons between baseline and follow-up showed a significant improvement in psychological impairment and deterioration of physical exhaustion. CONCLUSIONS: Our study applies a biopsychosocial perspective to bothersome somatic symptoms during the COVID-19 pandemic and contributes to the identification of potential risk factors as a starting point for future interventions that could support the handling of symptoms.


Subject(s)
COVID-19 , Medically Unexplained Symptoms , Humans , COVID-19/epidemiology , Follow-Up Studies , SARS-CoV-2 , Pandemics , Delivery of Health Care
16.
Emerg Infect Dis ; 28(9): 1765-1769, 2022 09.
Article in English | MEDLINE | ID: mdl-35905463

ABSTRACT

Beginning in May 2022, a rising number of monkeypox cases were reported in non-monkeypox-endemic countries in the Northern Hemisphere. We adapted 2 published quantitative PCRs for use as a dual-target monkeypox virus test on widely used automated high-throughput PCR systems. We determined analytic performance by serial dilutions of monkeypox virus reference material, which we quantified by digital PCR. We found the lower limit of detection for the combined assays was 4.795 (95% CI 3.6-8.6) copies/mL. We compared clinical performance against a commercial manual orthopoxvirus research use only PCR kit by using clinical remnant swab samples. Our assay showed 100% positive (n = 11) and 100% negative (n = 56) agreement. Timely and scalable PCR tests are crucial for limiting further spread of monkeypox. The assay we provide streamlines high-throughput molecular testing for monkeypox virus on existing broadly established platforms used for SARS-CoV-2 diagnostic testing.


Subject(s)
COVID-19 , Mpox (monkeypox) , Humans , Molecular Diagnostic Techniques , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
17.
Clin Gastroenterol Hepatol ; 20(1): 162-172.e9, 2022 01.
Article in English | MEDLINE | ID: mdl-34509643

ABSTRACT

BACKGROUND & AIMS: Detailed information on the immune response after second vaccination of cirrhotic patients and liver transplant (LT) recipients against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is largely missing. We aimed at comparing the vaccine-induced humoral and T-cell responses of these vulnerable patient groups. METHODS: In this prospective cohort study, anti-SARS-CoV-2 spike-protein titers were determined using the DiaSorin LIAISON (anti-S trimer) and Roche Elecsys (anti-S RBD) immunoassays in 194 patients (141 LT, 53 cirrhosis Child-Pugh A-C) and 56 healthy controls before and 10 to 84 days after second vaccination. The spike-specific T-cell response was assessed using an interferon-gamma release assay (EUROIMMUN). A logistic regression analysis was performed to identify predictors of low response. RESULTS: After the second vaccination, seroconversion was achieved in 63% of LT recipients and 100% of cirrhotic patients and controls using the anti-S trimer assay. Median anti-SARS-CoV-2 titers of responding LT recipients were lower compared with cirrhotic patients and controls (P < .001). Spike-specific T-cell response rates were 36.6%, 65.4%, and 100% in LT, cirrhosis, and controls, respectively. Altogether, 28% of LT recipients did neither develop a humoral nor a T-cell response after second vaccination. In LT recipients, significant predictors of absent or low humoral response were age >65 years (odds ratio [OR], 4.57; 95% confidence interval [CI], 1.48-14.05) and arterial hypertension (OR, 2.50; 95% CI, 1.10-5.68), whereas vaccination failure was less likely with calcineurin inhibitor monotherapy than with other immunosuppressive regimens (OR, 0.36; 95% CI, 0.13-0.99). CONCLUSION: Routine serological testing of the vaccination response and a third vaccination in patients with low or absent response seem advisable. These vulnerable cohorts need further research on the effects of heterologous vaccination and intermittent reduction of immunosuppression before booster vaccinations.


Subject(s)
COVID-19 , RNA, Viral , Aged , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunity , Liver Cirrhosis , Prospective Studies , SARS-CoV-2 , T-Lymphocytes , Vaccination
18.
Clin Gastroenterol Hepatol ; 20(11): 2558-2566.e5, 2022 11.
Article in English | MEDLINE | ID: mdl-35850415

ABSTRACT

BACKGROUND & AIMS: Liver transplant recipients (LTRs) show a decreased immune response after 2 severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccinations compared with healthy controls (HCs). Here, we investigated the immunogenicity of additional vaccinations. METHODS: In this prospective study, humoral (anti-SARS-CoV-2 receptor-binding domain [anti-S RBD]) and cellular (interferon-gamma release assay) immune responses were determined after mRNA-based SARS-CoV-2 vaccination in 106 LTRs after a third vaccination and in 36 LTRs after a fourth vaccination. Patients with anti-S RBD antibody levels >0.8 arbitrary unit (AU)/mL after vaccination were defined as responders. RESULTS: After 3 vaccinations, 92% (97/106) of LTRs compared with 100% (28/28) of HCs were responders. However, the antibody titer of LTRs was lower compared with HCs (1891.0 vs 21,857.0 AU/mL; P < .001). Between a second and third vaccination (n = 75), the median antibody level increased 67-fold in LTRs. In patients seronegative after 2 vaccinations, a third dose induced seroconversion in 76% (19/25), whereas all HCs were already seropositive after 2 vaccinations. A spike-specific T-cell response was detected in 72% (28/39) after a third vaccination compared with 32% (11/34) after a second vaccination. Independent risk factors for a low antibody response (anti-S RBD <100 AU/mL) were first vaccination within the first year after liver transplant (odds ratio [OR], 8.00; P = .023), estimated glomular filtration rate <45 mL/min (OR, 4.72; P = .006), and low lymphocyte counts (OR, 5.02; P = .008). A fourth vaccination induced a 9-fold increase in the median antibody level and seroconversion in 60% (3/5) of previous non-responders. CONCLUSIONS: A third and fourth SARS-CoV-2 vaccination effectively increases the humoral and cellular immune response of LTRs, but to a lesser extent than in HCs. A fourth vaccination should be generally considered in LTRs.


Subject(s)
COVID-19 , Liver Transplantation , Mice , Animals , Humans , COVID-19 Vaccines , Prospective Studies , Mice, Inbred BALB C , SARS-CoV-2 , COVID-19/prevention & control , Immunity, Cellular , Vaccination , RNA, Messenger , Transplant Recipients , Antibodies, Viral
19.
J Med Virol ; 94(10): 5038-5043, 2022 10.
Article in English | MEDLINE | ID: mdl-35662058

ABSTRACT

We aimed to provide in vitro data on the neutralization capacity of different monoclonal antibody (mAb) preparations against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta and omicron variant, respectively, and describe the in vivo RNA kinetics of coronavirus disease 2019 (COVID-19) patients treated with the respective mAbs. Virus neutralization assays were performed to assess the neutralizing effect of the mAb formulations casirivimab/imdevimab and sotrovimab on the SARS-CoV-2 delta and omicron variant. Additionally, respiratory tract SARS-CoV-2 RNA kinetics are provided for 25 COVID-19 patients infected with either delta variant (n = 18) or omicron variant (n = 7) treated with the respective mAb formulations during their hospital stay. In the virus neutralization assay, sotrovimab exhibits neutralizing capacity at therapeutically achievable concentrations against the SARS-CoV-2 delta and omicron variant. In contrast, casivirimab/imdevimab had neutralizing capacity against the delta variant but failed neutralization against the omicron variant except for a very high concentration above the currently recommended therapeutic dosage. In patients with delta variant infections treated with casivirimab/imdevimab, we observed a rapid decrease of respiratory viral RNA at day 3 after mAb therapy. In contrast, no such prompt decline was observed in patients with delta variant or omicron variant infections receiving sotrovimab.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Humans , Membrane Glycoproteins/genetics , Neutralization Tests , RNA, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Treatment Outcome , Viral Envelope Proteins/genetics
20.
Infection ; 50(5): 1391-1397, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35570238

ABSTRACT

PURPOSE: Symptoms often persistent for more than 4 weeks after COVID-19-now commonly referred to as 'Long COVID'. Independent of initial disease severity or pathological pulmonary functions tests, fatigue, exertional intolerance and dyspnea are among the most common COVID-19 sequelae. We hypothesized that respiratory muscle dysfunction might be prevalent in persistently symptomatic patients after COVID-19 with self-reported exercise intolerance. METHODS: In a small cross-sectional pilot study (n = 67) of mild-to-moderate (nonhospitalized) and moderate-to-critical convalescent (formerly hospitalized) patients presenting to our outpatient clinic approx. 5 months after acute infection, we measured neuroventilatory activity P0.1, inspiratory muscle strength (PImax) and total respiratory muscle strain (P0.1/PImax) in addition to standard pulmonary functions tests, capillary blood gas analysis, 6 min walking tests and functional questionnaires. RESULTS: Pathological P0.1/PImax was found in 88% of symptomatic patients. Mean PImax was reduced in hospitalized patients, but reduced PImax was also found in 65% of nonhospitalized patients. Mean P0.1 was pathologically increased in both groups. Increased P0.1 was associated with exercise-induced deoxygenation, impaired exercise tolerance, decreased activity and productivity and worse Post-COVID-19 functional status scale. Pathological changes in P0.1, PImax or P0.1/PImax were not associated with pre-existing conditions. CONCLUSIONS: Our findings point towards respiratory muscle dysfunction as a novel aspect of COVID-19 sequelae. Thus, we strongly advocate for systematic respiratory muscle testing during the diagnostic workup of persistently symptomatic, convalescent COVID-19 patients.


Subject(s)
COVID-19 , COVID-19/complications , Cross-Sectional Studies , Humans , Pilot Projects , Respiratory Muscles/physiology , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL