Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Environ Manage ; 309: 114650, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35193071

ABSTRACT

We examined the financial efficiency and effectiveness of landscape versus community protection fuel treatments to reduce structure exposure and loss to wildfire on a large fire-prone area of central Idaho (USA). The study area contained 63,707 structures distributed in 20 rural communities and resorts, encompassing 13,804 km2. We used simulation modeling to estimate expected structure loss based on burn probability and characteristics of the home ignition zone. We then designed three fuel management strategies that targeted treatments to: 1) the surrounding areas predicted to be the source of exposure to communities from large fires, 2) the home ignition zone, and 3) a combination of the landscape and home ignition zone. We evaluated each treatment scenario in terms of exposure and expected structure loss compared to a no-treatment scenario. The potential revenue from wood products was estimated for each scenario to assess the cost-efficiency. We found that the combined landscape and home ignition zone treatment scenario which treated 5.7% of the study area resulted in the highest overall reduction in predicted exposure (47.5%, 100 structures yr-1) and predicted loss (69.1%, 57 structures yr-1). Home ignition zone treatments provided the best predicted economic and per area treated performance where exposure and loss were reduced by one structure by treating 89 and 111 ha per year, respectively, with an annual cost of $33,645 and $73,672. Revenue from thinning was the highest for landscape fuel treatments and covered 16% of the required investment. This work highlighted economic and risk tradeoffs associated with alternative fuel treatment strategies to protect developed areas from large wildland fires.


Subject(s)
Fires , Wildfires , Computer Simulation , Fires/prevention & control , Probability , Risk Management
2.
J Environ Manage ; 320: 115920, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35933873

ABSTRACT

Despite growing interest in developing extensive fuel treatment programs to prevent catastrophic wildfires in the Mediterranean region, there is little information on the projected effectiveness of fuel treatments in terms of avoided exposure and risk. In Portugal, a fuel management plan aiming to prevent loss of lives, reduce large fires (>500 ha), and reduce annual burned area is under implementation, with particular emphasis on the nation-wide fuel break network (FBN). In this study, we evaluated the effectiveness of the planned FBN in terms of meeting fire management objectives, costs, and benefits. We first estimated the overall effectiveness of the FBN at intersecting modeled large fires (>500 ha) and at reducing exposure to protected areas and residential buildings using wildfire simulation modeling. Then, the fuel break burn-over percentage, i.e. the percentage of fires that are not contained at the FBN, was modeled as a function of pre-defined flame length thresholds for individual FBN segments. For the planned FBN, the results suggested a potential reduction of up to 13% in the annual burned area due to large fires (ca. 13,000 ha), of up to 8% in the annual number of residential buildings exposed (ca. 100 residential buildings), and up to 14% in the annual burned area in protected areas (ca. 2400 ha). The expected burn-over percentage was highly variable among the segments in response to estimated fire intensity, and an average decrease of 40% of the total benefits was estimated. The most important fuel breaks typically showed a higher percentage of fire burn-over, and hence reduction in effectiveness. We also showed that the current implementation of FBN follows a random sequence, suboptimal for all objectives. Our results suggest that additional landscape-scale fuel reduction strategies are required to meet short-term national wildfire management targets.


Subject(s)
Fires , Wildfires , Forests , Humans , Portugal
3.
J Environ Manage ; 293: 112825, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34289588

ABSTRACT

Recent extreme wildfire seasons in the United States (US) have rekindled policy debates about the underlying drivers and potential role forest management can play in reducing fuels and future wildfire. Most US western national forests face a substantial backlog of treatments and manifold management issues related to wildfire, forest health, and wildfire protection and constitute the major part of the wildfire problem. However, the precise schedule and detailed assessments that map the type and amount of treatments needed, as well as the associated cost are rarely assessed. We simulated restoration trajectories on the US fire prone Umatilla National Forest that faces complex management challenges related to wildfire and forest resiliency. The treatments were targeted to specific ecological conditions based on a decision tree developed in consultation with specialists. Planning areas were then prioritized based on fire protection of the wildland-urban interface (WUI), forest products, and stand resiliency. The results revealed a backlog of 211,893 ha, that when treated would generate $320 million in revenue from forest products, and cover 80% of the forest. The treatment area estimate was more than double prior estimates based on ecological departure from historic condition. Financial sensitivity analysis showed that high priority fuel treatments were revenue positive on 22% of the planning areas. The study established a restoration blueprint in terms of amount, location, and treatment type to support funding requests to the agency and schedule internal and external capacity to complete the work. The work also contributes to ongoing collaborative restoration planning to help stakeholders understand the opportunity cost of specific restoration objectives. The case study and framework can be widely extrapolated to the national forests in the western US to improve financial evaluation of forest and fuel management and estimate future management inputs. This work represents a rare instance of a bottom-up spatially explicit assessment of a restoration backlog, and prioritization of planning areas to reduce that backlog on a US national forest.


Subject(s)
Forests , Wildfires , Seasons , United States
5.
J Environ Manage ; 231: 303-320, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30359896

ABSTRACT

Southern European countries rely largely on fire suppression and ignition prevention to manage a growing wildfire problem. We explored a more wholistic, long-term approach based on priority maps for the implementation of diverse management options aimed at creating fire resilient landscapes, restoring cultural fire regimes, facilitating safe and efficient fire response, and creating fire-adapted communities. To illustrate this new comprehensive strategy for fire-prone Mediterranean areas, we developed and implemented the framework in Catalonia (northeastern Spain). We first used advanced simulation modeling methods to assess various wildfire exposure metrics across spatially changing fire-regime conditions, and these outputs were then combined with land use maps and historical fire occurrence data to prioritize different fuel and fire management options at the municipality level. Priority sites for fuel management programs concentrated in the central and northeastern high-hazard forestlands. The suitable areas for reintroducing fires in natural ecosystems located in scattered municipalities with ample lightning ignitions and minimal human presence. Priority areas for ignition prevention programs were mapped to populated coastal municipalities and main transportation corridors. Landscapes where fire suppression is the principal long-term strategy concentrated in agricultural plains with a high density of ignitions. Localized programs to build defensible space and improve self-protection on communities could be emphasized in the coastal wildland-urban interface and inner intermix areas from Barcelona and Gerona. We discuss how the results of this study can facilitate collaborative landscape planning and identify the constraints that prevent a longer term and more effective solution to better coexist with fire in southern European regions.


Subject(s)
Wildfires , Conservation of Natural Resources , Ecosystem , Forests , Humans , Spain
6.
J Environ Manage ; 245: 504-518, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31153605

ABSTRACT

Much of the western United States is experiencing longer fire seasons with an increased frequency of high-severity fires and fire risk. Fire managers in the southwestern United States have increased efforts to reduce fire risk by managing more fires to meet resource objectives (e.g. thin forests, reduce hazardous fuel loads, and restore the landscape). However, little is known about the situational circumstances and decision space that inform the strategic response to wildland fire. Using generalized and time-to-event modeling techniques, we examined how fire management decisions are reached in a context informed by weather, burning conditions, and subsequent fire behavior. Modeling results captured daily containment probabilities along a gradient from limiting natural conditions to suppression invoked containment. Results inform fire management decisions, future research efforts, and the simulation of wildland fires with resource objectives.


Subject(s)
Fires , Wildfires , Forests , Southwestern United States , United States , Weather
7.
Risk Anal ; 38(10): 2105-2127, 2018 10.
Article in English | MEDLINE | ID: mdl-29694686

ABSTRACT

We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning.

8.
J Environ Manage ; 212: 490-505, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29475158

ABSTRACT

Wildfire spread and behavior can be limited by fuel treatments, even if their effects can vary according to a number of factors including type, intensity, extension, and spatial arrangement. In this work, we simulated the response of key wildfire exposure metrics to variations in the percentage of treated area, treatment unit size, and spatial arrangement of fuel treatments under different wind intensities. The study was carried out in a fire-prone 625 km2 agro-pastoral area mostly covered by herbaceous fuels, and located in Northern Sardinia, Italy. We constrained the selection of fuel treatment units to areas covered by specific herbaceous land use classes and low terrain slope (<10%). We treated 2%, 5% and 8% of the landscape area, and identified priority sites to locate the fuel treatment units for all treatment alternatives. The fuel treatment alternatives were designed create diverse mosaics of disconnected treatment units with different sizes (0.5-10 ha, LOW strategy; 10-25 ha, MED strategy; 25-50 ha, LAR strategy); in addition, treatment units in a 100-m buffer around the road network (ROAD strategy) were tested. We assessed pre- and post-treatment wildfire behavior by the Minimum Travel Time (MTT) fire spread algorithm. The simulations replicated a set of southwestern wind speed scenarios (16, 24 and 32 km h-1) and the driest fuel moisture conditions observed in the study area. Our results showed that fuel treatments implemented near the existing road network were significantly more efficient than the other alternatives, and this difference was amplified at the highest wind speed. Moreover, the largest treatment unit sizes were the most effective in containing wildfire growth. As expected, increasing the percentage of the landscape treated and reducing wind speed lowered fire exposure profiles for all fuel treatment alternatives, and this was observed at both the landscape scale and for highly valued resources. The methodology presented in this study can support the design and optimization of fuel management programs and policies in agro-pastoral areas of the Mediterranean Basin and herbaceous type landscapes elsewhere, where recurrent grassland fires pose a threat to rural communities, farms and infrastructures.


Subject(s)
Conservation of Natural Resources , Wildfires , Fires , Italy , Wind
9.
Risk Anal ; 37(10): 1898-1916, 2017 10.
Article in English | MEDLINE | ID: mdl-27996154

ABSTRACT

We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities.

10.
J Environ Manage ; 176: 157-68, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27033166

ABSTRACT

We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning.


Subject(s)
Conservation of Natural Resources , Fires/prevention & control , Forests , Ecology , Models, Theoretical , Oregon , Plant Diseases/prevention & control , Risk Management , Trees/microbiology , Trees/parasitology , Washington
11.
Risk Anal ; 35(8): 1393-406, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25968881

ABSTRACT

We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities.


Subject(s)
Fires , Biophysics , Conservation of Natural Resources , Risk Assessment , United States
12.
Environ Manage ; 55(5): 1200-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25613434

ABSTRACT

We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km(2) located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.


Subject(s)
Conservation of Natural Resources/methods , Environment Design , Fires , Weather , Algorithms , Computer Simulation , Conservation of Natural Resources/economics , Conservation of Natural Resources/trends , Fires/prevention & control , Humans , Italy , Models, Theoretical , Probability , Risk Assessment/methods , Risk Management
13.
Environ Monit Assess ; 187(1): 4175, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25471625

ABSTRACT

In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.


Subject(s)
Environmental Monitoring , Fires/statistics & numerical data , Conservation of Natural Resources , Fires/prevention & control , Humans , Italy , Probability , Risk Assessment/methods , Seasons , Wind
14.
J Environ Manage ; 145: 54-70, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24997402

ABSTRACT

Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework.


Subject(s)
Conservation of Natural Resources , Fires , Forests , Models, Theoretical , Probability , Risk Management , United States
15.
Risk Anal ; 33(6): 1000-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23078351

ABSTRACT

We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small fires from anthropogenic ignitions. Wildfire simulation modeling was used to characterize potential wildfire behavior in terms of annual burn probability and flame length. Spatial data on selected social and ecological features were obtained from Forest Service GIS databases and elsewhere. The potential wildfire behavior was then summarized for each spatial location of each resource. The analysis suggested strong spatial variation in both burn probability and conditional flame length for many of the features examined, including biodiversity, urban interfaces, and infrastructure. We propose that the spatial patterns in modeled wildfire behavior could be used to improve existing prioritization of fuel management and wildfire preparedness activities within the Pacific Northwest region.


Subject(s)
Animals, Wild , Fires , Trees , Animals , Geographic Information Systems , Northwestern United States , Risk Assessment
16.
J Environ Manage ; 121: 124-32, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23538125

ABSTRACT

Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term impact of fuel treatment on the carbon balance of fire-prone forests has been difficult because of uncertainties regarding treatment and wildfire impacts on any given landscape. In this study we attempt to remove some of the confusion surrounding this subject by performing a sensitivity analysis wherein long-term, landscape-wide carbon stocks are simulated under a wide range of treatment efficacy, treatment lifespan, fire impacts, forest recovery rates, forest decay rates, and the longevity of wood products. Our results indicate a surprising insensitivity of long-term carbon stocks to both management and biological variables. After 80 years, a 1600% change in either forest growth or decomposition resulted in only a 40% change in total system carbon, and a 1600% change in either treatment application rate or efficacy in arresting fire spread resulted in only a 10% change in total system carbon. This insensitivity of long-term carbon stocks is due in part by the infrequency of treatment-wildfire interaction and in part by the controls imposed by maximum forest biomass. None of the fuel treatment simulation scenarios resulted in increased system carbon.


Subject(s)
Biomass , Fires , Forestry , Models, Biological , Trees/growth & development , Carbon Cycle , Oregon
17.
PLoS One ; 18(12): e0295392, 2023.
Article in English | MEDLINE | ID: mdl-38091301

ABSTRACT

Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network and explore tradeoffs between two implementation strategies on a 0.5 million ha national forest in the western US. We segmented the network into 2,766 treatment units and used a spatial optimization model to compare linear versus radial project implementation geometries. We hypothesized that linear projects were more efficient at intercepting individual fire events over larger spatial domains, whereas radial projects conferred a higher level of network redundancy in terms of the length of the fuel break exposed to fires. We simulated implementation of the alternative project geometries and then examined fuel break-wildfire spatial interactions using a library of simulated fires developed in prior work. The results supported the hypothesis, with linear projects exhibiting substantially greater efficiency in terms of intercepting fires over larger areas, whereas radial projects had a higher interception length given a fire encountered a project. Adding economic objectives made it more difficult to obtain alternative project geometries, but substantially increased net revenue from harvested trees. We discuss how the model and results can be used to further understand decision tradeoffs and optimize the implementation of planned fuel break networks in conjunction with landscape conservation, protection, and restoration management in fire prone regions.


Subject(s)
Ecosystem , Fires , Conservation of Natural Resources/methods , Forests , Trees , Fires/prevention & control
18.
Ecology ; 93(11): 2421-34, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23236913

ABSTRACT

Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations with highly suitable weather vs. locations with low suitability. The models were useful for estimating expected amounts of damage (total area with outbreaks) and for quantifying the contribution of climate to total damage. Overall, the results confirm the importance of climate and weather on the spatial expansion of bark beetle outbreaks over time.


Subject(s)
Climate , Coleoptera/physiology , Pinus/parasitology , Weather , Animals , Demography , Environmental Monitoring , Host-Parasite Interactions , Models, Biological , Oregon , Seasons , Time Factors , Washington
19.
Environ Monit Assess ; 179(1-4): 217-39, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20981570

ABSTRACT

In this article, we describe the design and development of a quantitative, geospatial risk assessment tool intended to facilitate monitoring trends in wildfire risk over time and to provide information useful in prioritizing fuels treatments and mitigation measures. The research effort is designed to develop, from a strategic view, a first approximation of how both fire likelihood and intensity influence risk to social, economic, and ecological values at regional and national scales. Three main components are required to generate wildfire risk outputs: (1) burn probability maps generated from wildfire simulations, (2) spatially identified highly valued resources (HVRs), and (3) response functions that describe the effects of fire (beneficial or detrimental) on the HVR. Analyzing fire effects has to date presented a major challenge to integrated risk assessments, due to a limited understanding of the type and magnitude of changes wrought by wildfire to ecological and other nonmarket values. This work advances wildfire effects analysis, recognizing knowledge uncertainty and appropriately managing it through the use of an expert systems approach. Specifically, this work entailed consultation with 10 fire and fuels program management officials from federal agencies with fire management responsibilities in order to define quantitative resource response relationships as a function of fire intensity. Here, we demonstrate a proof-of-concept application of the wildland fire risk assessment tool, using the state of Oregon as a case study.


Subject(s)
Fires/statistics & numerical data , Wilderness , Conservation of Natural Resources , Forestry , Risk Assessment/methods , Risk Factors
20.
Sci Rep ; 11(1): 19319, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588539

ABSTRACT

Understanding ownership effects on large wildfires is a precursor to the development of risk governance strategies that better protect people and property and restore fire-adapted ecosystems. We analyzed wildfire events in the Pacific Northwest from 1984 to 2018 to explore how area burned responded to ownership, asking whether particular ownerships burned disproportionately more or less, and whether these patterns varied by forest and grass/shrub vegetation types. While many individual fires showed indifference to property lines, taken as a whole, we found patterns of disproportionate burning for both forest and grass/shrub fires. We found that forest fires avoided ownerships with a concentration of highly valued resources-burning less than expected in managed US Forest Service forested lands, private non-industrial, private industrial, and state lands-suggesting the enforcement of strong fire protection policies. US Forest Service wilderness was the only ownership classification that burned more than expected which may result from the management of natural ignitions for resource objectives, its remoteness or both. Results from this study are relevant to inform perspectives on land management among public and private entities, which may share boundaries but not fire management goals, and support effective cross-boundary collaboration and shared stewardship across all-lands.

SELECTION OF CITATIONS
SEARCH DETAIL