ABSTRACT
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
ABSTRACT
Management of relapses and refractory rheumatoid arthritis (RA) patients is complex and difficult. Even after the administration of new biological disease-modifying anti-rheumatic drugs (DMARDs), only a few patients achieve the complete remission phase. DMARDs help only in modifying the disease activity, which sooner or later fails. They do not manage the disease at the patho-etiological level. There are some serious side effects as well as drug interaction with DMARDs. There are few subsets of RA patients who do not respond to DMARDs, reasons unknown. Mesenchymal stem cells (MSCs) provide a promising alternative, especially in such cases. This review elaborates on the studies pertaining to the application of MSCs in rheumatoid arthritis over the last two decades. A total of 14 studies (one review article) including 447 patients were included in the study. Most of the studies administered MSCs in refractory RA patients through the intravenous route with varied dosages and frequency of administration. MSCs help in RA treatment via various mechanisms including paracrine effects. All the studies depicted a better clinical outcome with minimal adverse events. The functional scores including the VAS scores improved significantly in all studies irrespective of dosage and source of MSCs. The majority of the studies depicted no complications. Although the use of MSCs in RA is still in the early stages requiring further refinement in the source of MSCs, dosage, and frequency. The role of MSCs in the management of RA has a promising prospect. MSCs target the RA at the molecular level and has the potential to manage refractory RA cases not responding to conventional treatment. Multicentric, large sample populations, and long-term studies are required to ascertain efficacy and safety.
Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Arthritis, Rheumatoid/therapy , Antirheumatic Agents/therapeutic use , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methodsABSTRACT
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Theranostic Nanomedicine , Humans , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Theranostic Nanomedicine/methods , Blood-Brain Barrier/metabolism , Animals , Drug Delivery Systems/methods , Nanoparticles/chemistry , Amyloid beta-Peptides/metabolismABSTRACT
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising regenerative therapeutic approach for wound healing. To determine the effects of cultured MSCs as a 2D monolayer (2D-MSCs) and 3D spheroids (3D-MSCs) on their secretomes, and to examine the effect of 3D-MSC secretomes on endothelial cells (ECs) and MSCs in a burn injury mouse model. MSCs were cultured as 2D monolayers (2D-MSCs) and 3D spheroids (3D-MSCs) and their cellular characteristics were evaluated by western blotting. 2D-MSC and 3D-MSC secretomes (condition medium: CM) were analyzed using an angiogenic array. The activation of ECs by 2D-MSC and 3D-MSC CMs was examined in cellular proliferation, migration, and tube formation assays. The wound healing effects of 2D-MSCs and 3D-MSCs were determined in vivo using a burn injury mouse model. 3D culture conditions altered the markers of components that regulate cell survival, cytoskeletal, adhesion, and proliferation. Interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), IL-8, and chemokine (CXC motif) ligand 1 (CXCL1) were present at high levels in the CM of 3D-MSCs compared with 2D-MCs. 3D-MSC-CMs promoted the proliferation, migration, and tube formation of ECs. Furthermore, 3D-MSC treatment enhanced wound healing in a burn injury mouse model. 3D culture improves proangiogenic factors in the MSC secretome and 3D-MSCs represent a new cell-based treatment strategy for wound healing.
Subject(s)
Burns , Mesenchymal Stem Cells , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Secretome , Endothelial Cells/metabolism , Bone Marrow/metabolism , Wound Healing , Burns/therapy , Burns/metabolism , Culture Media, Conditioned/pharmacologyABSTRACT
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Subject(s)
Thyroid Neoplasms , Tumor-Associated Macrophages , Humans , Thyroid Neoplasms/therapy , Prognosis , Macrophages , Immunotherapy , Tumor MicroenvironmentABSTRACT
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been utilized as medicinal agents or as delivery vehicles in cartilage injuries and cartilage-based diseases. Given the ongoing emergence of evidence on the effector mechanisms and methods of the utility of the MSC-Exos in knee osteoarthritis, a comprehensive review of the current evidence is the need of the hour. Hence, in this article, we review the current understanding of the role of MSC-Exos in the management of knee osteoarthritis in view of their classification, characterization, biogenesis, mechanism of action, pathways involved in their therapeutic action, in-vitro evidence on cartilage regeneration, in-vivo evidence in OA knee models and recent advances in using MSC-Exos to better streamline future research from bench to bedside for OA knee.
Subject(s)
Exosomes , Mesenchymal Stem Cells , Osteoarthritis, Knee , Cartilage , Chondrocytes/metabolism , Exosomes/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/therapyABSTRACT
Extracellular vesicles (EVs) have been exhibited as promising candidates for delivering endogenous therapeutic cargos for regenerative therapies. Fibroblasts could be candidate source cells for EVs, to investigate their therapeutic effects in wound healing. Here we demonstrated the isolation and characterization of fibroblast-derived (L929 cell line) EVs (L929-EVs). Furthermore, L929-EVs treatment showed pro-wound healing effects in vitro by enhancing proliferation, migration, and scarless wound healing related genes in fibroblast cells. L929-EVs treatment also enhanced the migration and tube formation of endothelial cells. The combination of L929-EVs with fibrin glue accelerated wound healing in the mouse skin wound model by enhancing collagen formation, collagen maturation, and blood vessels in the wounded skin. The role of fibroblast-derived EVs in wound healing could be an important phenomenon, and fibroblast-derived EVs could be harnessed for wound healing therapies.
Subject(s)
Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Wound Healing/physiology , Animals , Cell Proliferation/physiology , Collagen/metabolism , Mice , Skin/metabolismABSTRACT
Recent studies clearly show that cell-derived extracellular vesicles (EVs, including exosomes) can promote hair growth. However, large-scale production of EVs remains a big hurdle. Recently, extracellular vesicle mimetics (EMs) engineered by extrusion through various membranes are emerging as a complementary approach for large-scale production. In this study, to investigate their ability to induce hair growth, we generated macrophage-engineered EMs (MAC-EMs) that activated the human dermal papilla (DP) cells in vitro. MAC-EMs intradermally injected into the skin of C57BL/6 mice were retained for up to 72 h. Microscopy imaging revealed that MAC-EMs were predominately internalized into hair follicles. The MAC-EMs treatment induced hair regrowth in mice and hair shaft elongation in a human hair follicle, suggesting the potential of MAC-EMs as an alternative to EVs to overcome clinical limitation.
Subject(s)
Extracellular Vesicles/metabolism , Hair Follicle/growth & development , Hair Follicle/metabolism , Hair/metabolism , Macrophages/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Dermis/growth & development , Dermis/metabolism , Dermis/physiology , Exosomes/metabolism , Hair/growth & development , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Skin/metabolism , Wnt Signaling Pathway/physiologyABSTRACT
Growing global biowaste and its environmental issues challenge the need for converting biowastes into a beneficial product. Among the biowaste, here kiwi fruit (Actinidia Deliciosa) peels are considered for the preparation of carbon dots (CDs). Using a green one-pot hydrothermal-carbonization method, kiwi fruit peels were effectively converted into valuable kiwi fruit peel carbon dots (KFP-CDs). The morphology, physio-chemical and optical properties of as-synthesized KFP-CDs were analyzed using various analytical techniques such as X-ray powder diffraction, Raman spectroscopy, attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet-visible, and fluorescence spectroscopy. The KFP-CDs revealed a homogeneous spherical shape, monodispersed with an average size of 5 nm. The characterization confirms that KFP-CDs have functional groups such as -CN, -COOH, and -OH which are responsible for the easy dispersion of KFP-CDs in aqueous media. Without any preprocessing, KFP-CDs exhibit strong fluorescence upon exposure to UV light. Further, KFP-CDs displayed excitation-dependent fluorescence emission with a good quantum yield of about 18%. Thus by considering the excellent properties of KFP-CDs, KFP-CDs were used as fluorescent ink for drawing and writing without any capping/passivation agent. The pictures and words were instantaneously viewed when exposed to UV light. In addition, KFP-CDs tested for cell imaging in four human cell lines (normal and cancer cells) bestowed excellent biocompatibility and low cytotoxicity, which is important for the safe and long-term development of cellular imaging. The findings imply that KFP-CDs can be utilized as a cell labeling agent for mesenchymal stem cells, breast cancer, and thyroid cancer cells in vitro imaging. Thus, these observations revealed that investigating sustainable resource-based CDs can open up new avenues for tackling environmental issues.
Subject(s)
Neoplasms , Quantum Dots , Carbon/chemistry , Humans , Ink , Photoelectron Spectroscopy , Quantum Dots/chemistry , Quantum Dots/toxicity , Spectrometry, FluorescenceABSTRACT
BACKGROUND: Sleep disturbance is one of the most common non-motor symptoms of Parkinson's disease (PD). However, the confounding effects of dopaminergic medication on sleep are a major challenge in understanding the impact of sleep disturbance in PD. We investigated the sleep disturbance and associated clinical features in patients with de novo, untreated PD. METHODS: One-hundred-eight patients with de novo, untreated PD were included. Night sleep disturbance was evaluated using the night sleep subscale of the Scales for Outcomes in Parkinson's Disease (SCOPA-Sleep). Depression, anxiety, and apathy were assessed using the Geriatric Depression Scale (GDS), Beck Anxiety Inventory (BAI), and Apathy Evaluation Scale (AES), respectively. Early perfusion and dopamine transporter imaging of F-18 FP-CIT PET/CT were performed together with statistical parametric mapping analysis. RESULTS: The night sleep SCOPA-Sleep sub-score was correlated with the AES (p = 0.014), BAI (p = 0.014), and GDS (p = 0.023) scores. Patients with poor night sleep were more apathetic (p = 0.013). Additionally, there was increased perfusion in the left posterior cingulate in patients with sleep disturbance and apathy compared to those with sleep disturbance only. CONCLUSIONS: Night sleep disturbance was related to mood disorders, particularly apathy, in patients with de novo, untreated PD.
Subject(s)
Apathy , Parkinson Disease , Sleep Wake Disorders , Aged , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Positron Emission Tomography Computed Tomography , Sleep , Sleep Wake Disorders/etiologyABSTRACT
Hepatotoxicity is a major global public health concern. Despite advances in modern medicine, the demerits of chemically prepared drugs outweigh their merits. In addition, the treatment of liver diseases based on modern medical principles has been found to produce several undesired side effects. Therefore, the exploration of medicinal plants has gained worldwide attention for treating various diseases, including liver diseases, owing to their potential efficacy and cost effectiveness. Several plants, including Andrographis paniculata, Bauhinia purpurea, Commelina nudiflora, Dillenia suffruticosa, Elaeis guineensis, Lygodium microphyllum, and Nephrolepis biserrata, have been reported with hepatoprotection. Moreover, these plants have been shown to play a vital role in ameliorating cellular damage because they contain several phytochemicals, including alkaloids, saponins, flavonoids, tannins, terpenoids, steroids, polyphenols, and diterpenoid lactones. The following antioxidant, anti-inflammatory, immunomodulatory, and hepatoprotective compounds have been found in these plants: andrographolide, rosmarinic acid, phenol, eugenol, 9,12-octadecadienoic, n-hexadecanoic acid, dihydroxy dimethoxy flavone, sitosterol, demethoxycurcumin, quercetin, linoleic acid, stigmasterol, kojic acid, indole-2-one, α-terpinol, linalool, kaempferol, catechin, ellagic acid, and oleanolic acid. This paper aimed to provide an in-depth review of in vivo studies on Malaysian medicinal plants possessing hepatoprotective properties, phytochemical ingredients, and antioxidant mechanisms, with an emphasis on the species proven particularly useful for treating hepatic disorders.
Subject(s)
Antioxidants , Plants, Medicinal , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxidative Stress , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants, Medicinal/metabolismABSTRACT
In this study, we noninvasively assessed whether M2-like macrophages accelerate the progression of ovarian cancer by performing molecular imaging of ovarian cancer cells expressing enhanced firefly luciferase (Effluc) in living mice. First, murine ovarian cancer ID8 cells expressing Effluc (ID8/Effluc cells) were established by retroviral infection. Subsequently, macrophages were isolated from the peritoneal exudate of mice injected with thioglycollate medium and differentiated into M2-like macrophages by adding interleukin 4. To characterize these M2-like macrophages, F4/80 and cluster of differentiation 206 expression levels were determined. Then, the M2-like macrophages were co-cultured with the ID8/Effluc cells and bioluminescence imaging (BLI) of signals from the ID8/Effluc cells was completed. Additionally, migration and wound healing were assessed to evaluate the effects of conditioned medium (CM) from M2-like macrophages on ID8/Effluc cell motility. In the in vivo study, mice were first given either liposome-phosphate-buffered saline or liposome-clodronate (lipo-clodronate). After 24 h, ID8/Effluc cells were intraperitoneally injected into the mice and BLI was completed at the designed time points. Next, histological analysis was conducted to characterize the infiltrated tumor. Flow cytometric analysis revealed high levels of CD206 expression in the differentiated M2-like macrophages. Meanwhile, ID8/Effluc cells co-cultured with these M2-like macrophages proliferated rapidly in an M2-like macrophage, number-dependent manner. The migration of the ID8/Effluc cells was also increased by the application of CM from M2-like macrophages. In vivo BLI revealed that the growth rate of intraperitoneally injected ovarian cancer cells was inhibited following macrophage depletion by treatment with lipo-clodronate. M2-like macrophages accelerated the progression of ovarian cancer, suggesting they are a new therapeutic target for ovarian cancer and that ovarian cancer could be managed by altering the nature of communication between ovarian cancer and macrophages.
Subject(s)
Carcinoma, Ovarian Epithelial/metabolism , Cell Differentiation/physiology , Macrophages/metabolism , Ovarian Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Culture Media, Conditioned/metabolism , Female , Genes, Reporter/genetics , Genes, Reporter/physiology , Humans , Mice , Molecular Imaging/methods , Ovarian Neoplasms/pathologyABSTRACT
BACKGROUND: Ischemia is the partial or complete blockage of blood supply to tissues. Extracellular vesicles (EVs) are emerging as a therapeutic tool for ischemic diseases. Most EV-based ischemia therapies are based on various stem cells. Here, we propose an alternative cell source for the isolation of pro-angiogenic EVs. METHODS: EVs were isolated from a mouse macrophage cell line (Raw 264.7). The characteristic features of the macrophage-derived EVs (MAC-EVs) were assessed using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB) analysis. WB and qRT-PCR were performed to identify the pro-angiogenic VEGF and Wnt3a proteins and microRNAs (miR-210, miR-126, and miR-130a) in the MAC-EVs. In vitro and in vivo Matrigel plug assays were performed to investigate the capacity of the MAC-EVs for tube (blood vessel-like) formation and new blood vessel formation and assessed by histology. RESULTS: The MAC-EVs was positive for ALIX and negative for calnexin, with a round shape and an average size of 189 ± 65.1 nm. WB and qRT-PCR results revealed that VEGF, Wnt3a and miR-130a were more abundant in the MAC-EVs than cells. MAC-EVs treatment resulted in increased endothelial cellular proliferation, migration, and tube formation in vitro. In vivo assay results revealed that MAC-EVs increased the formation of new and larger blood vessels in the Matrigel plug of mice compared to the formation in the control group. CONCLUSION: Our results suggest that MAC-EVs have the potential to induce angiogenesis in vitro and in vivo, could serve as a pro-angiogenic alternative for ischemic diseases.
Subject(s)
Extracellular Vesicles/metabolism , Macrophages/metabolism , Neovascularization, Physiologic , Angiogenesis Inducing Agents/metabolism , Animals , Cell Movement , Cell Proliferation , Collagen , Disease Models, Animal , Drug Combinations , Endothelial Cells/metabolism , Extracellular Vesicles/ultrastructure , Female , Fluorescence , Laminin , Macrophages/ultrastructure , Mice , Mice, Nude , Proteoglycans , RAW 264.7 CellsABSTRACT
BACKGROUND: Extracellular vesicles, have gained increasing attention for their application in drug delivery. Here, we developed a novel method for radiolabeling WBCs with 99mTc using RBC-derived extracellular vesicles -mimetics (EVMs), and monitored in vivo inflammation tracking of 99mTc-WBC using gamma camera in acute inflammation mouse model. METHODS: Engineered EVMs from RBCs were produced by a one-step extrusion method. RBC-EVMs were analyzed by NTA and TEM. Cells were labeled with 99mTc by using 99mTc-RBC-EVMs. Inflammation mice model was prepared and confirmed by 18F-FDG PET/CT. 99mTc-WBCs were injected in mice, and their biodistribution was analyzed by gamma camera. FINDING: The radiochemical purity of 99mTc-RBC-EVMs was 100%. The 99mTc-labeling did't affect the size and morphology. The 99mTc in the cytoplasm of RBC-EVMs was successfully confirmed by high angle annular dark field STEM (scanning transmission electron microscope). Cells were successfully labeled with 99mTc using 99mTc-RBC-EVMs, and the counts per minute was increased in dose- and time-dependent manners. The 18F-FDG PET/CT images confirmed establishment of acute inflammation (left mouse foot). 99mTc-WBCs showed higher uptake in the inflamed foot than non-inflamed foot. INTERPRETATION: This novel method for radiolabeling WBCs using RBC-EVMs. 99mTc labeling may be a feasible method to monitor the in vivo biodistribution of cells.
Subject(s)
Erythrocytes/metabolism , Extracellular Vesicles/metabolism , Leukocytes/metabolism , Radiopharmaceuticals/metabolism , Technetium/metabolism , Animals , Cell Tracking , Disease Models, Animal , Extracellular Vesicles/ultrastructure , Female , Inflammation/diagnostic imaging , Inflammation/etiology , Inflammation/metabolism , Mice , Molecular Imaging/methods , Rats , Staining and Labeling , Subcellular Fractions , Tissue DistributionABSTRACT
Dermal papillae (DP) play key roles in hair growth and regeneration by regulating follicular cell activity. Owing to the established roles of exosomes (Exos) in the regulation of cell functions, we investigated whether DP-derived Exos, especially those from three-dimensional (3D)-cultured DP cells, affect hair growth, cycling and regeneration. Exos derived from 3D DP (3D DP-Exos) promoted the proliferation of DP cells and outer root sheath (ORS) cells and increased the expression of growth factors (IGF-1, KGF and HGF) in DP cells. 3D DP-Exo treatment also increased hair shaft elongation in cultured human hair follicles. In addition, local injections of 3D DP-Exos induced anagen from telogen and also prolonged anagen in mice. Moreover, Exo treatment in human DP spheres augmented hair follicle neogenesis when the DP spheres were implanted with mouse epidermal cells. Similar results were obtained using Exos derived from 2D-cultured DP cells (2D DP-Exo). Collectively, our data strongly suggest that Exos derived from DP cells promote hair growth and hair regeneration by regulating the activity of follicular dermal and epidermal cells; accordingly, these findings have implications for the development of therapeutic strategies for hair loss.
Subject(s)
Dermis/physiology , Exosomes/physiology , Hair Follicle/physiology , Animals , Cell Culture Techniques , Cell Proliferation , Cells, Cultured , Female , Fibroblasts/cytology , Hair/growth & development , Humans , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Microscopy, Phase-ContrastABSTRACT
BACKGROUND: The aim of this study is to investigate the performance of F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) or positron emission tomography/computed tomography (PET/CT) for the assessment of disease activity in patients with large vessel vasculitis (LVV) through a meta-analysis. METHODS: The MEDLINE via PubMed and EMBASE were searched for the studies evaluating the performance of F-18 FDG PET or PET/CT in the assessment of disease activity in patients with LVV. Pooled sensitivity, specificity, diagnostic odds ratios (DORs), and summary receiver-operating characteristic (sROC) curve were estimated across the included studies. Possible publication bias was assessed by Deek's funnel plot asymmetry tests. RESULTS: A total of 439 PET images from 298 patients pooled from nine studies showed that the pooled sensitivity was 0.88 [95% confidence interval (CI) 0.79-0.93] without heterogeneity (χ2 = 14.42, P = .07) and the pooled specificity was 0.81 (95% CI 0.64-0.91) with heterogeneity (χ2 = 63.72, P = .00) for the detection of active LVV. The pooled DOR was 30 (95% CI 8-107). Hierarchical sROC curve indicates that the area under the curve was 0.91 (95% CI 0.89-0.94). There was no significant publication bias (P = .42), and meta-regression analysis revealed that none of the variables was the source of the study heterogeneity. CONCLUSIONS: F-18 FDG PET has a good performance for the detection of active disease status in patients with LVV. Revised criteria for the assessment of disease activity incorporated with F-18 FDG PET or PET/CT should be introduced and validated. Further studies are warranted to determine if PET-based treatment of LVV can improve outcomes.
Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Vasculitis/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , ROC Curve , Regression Analysis , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Objective: The aim of this study was to investigate the prognostic value of metabolic characteristics of metastatic lymph node (LN) using pretreatment F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for patients with papillary thyroid carcinoma (PTC) and metastatic lateral LN (N1b). Methods: Ninety-six PTC patients (female:male = 72:24; median age, 44.5 years) with pathologic N1b who underwent pretreatment FDG PET/CT, total thyroidectomy, and radioactive iodine ablation were retrospectively reviewed. To predict responses to initial therapy and recurrence, clinicopathologic factors and metabolic parameters were reviewed, such as sex, age, tumor size, extranodal extension, number and ratio of metastatic LNs, serum thyroglobulin, and maximum standardized uptake value (SUVmax). Results: Among the 96 PTC patients, 81 (84.4%) were classified into the acceptable response (58 excellent; 23 indeterminate) and 15 (15.6%) into the incomplete response (8 biochemical incomplete; 7 structural incomplete) by the 2015 American Thyroid Association management guideline for differentiated thyroid carcinoma. The multivariate analysis showed that SUVmax of N1b (P = .018), pre-ablation stimulated thyroglobulin level (P = .006), and the ratio of metastatic LNs (P = .018) were related to incomplete response. The cutoff value of each variable was determined by receiver operating characteristic analysis. Nine (9.4%) patients experienced recurrences (median follow-up: 50 months). The Kaplan-Meier analysis revealed that SUVmax of N1b (cutoff value: 2.3; P = .025) and ratio of metastatic LNs (cutoff value: 0.218; P = .037) were significant prognostic factors for recurrence. Conclusion: High SUVmax of N1b cervical LN on pretreatment FDG PET/CT could predict incomplete responses to initial therapy and recurrence in patients with N1b PTC. Abbreviations: ATA = American Thyroid Association; DTC = well-differentiated thyroid carcinoma; FDG = F-18 fluorodeoxyglucose; IQR = interquartile range; LN = lymph node; N1b = metastatic lateral cervical lymph node; PET/CT = positron emission tomography/computed tomography; PTC = papillary thyroid carcinoma; RAI = radioactive iodine; ROC = receiver operating characteristic; SUVmax = maximum standardized uptake value; Tg = thyroglobulin; USG = ultrasonography.
Subject(s)
Carcinoma, Papillary , Thyroid Cancer, Papillary , Thyroid Neoplasms , Adult , Female , Fluorodeoxyglucose F18 , Humans , Iodine Radioisotopes , Lymph Nodes , Male , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Retrospective StudiesABSTRACT
Mesenchymal stem cells (MSCs) show therapeutic effects in various types of diseases. MSCs have been shown to migrate towards inflamed or cancerous tissues, and visualized after sacrificing the animal. MSCs are able to deliver drugs to target cells, and are an ideal candidate for cancer therapy. The purpose of this study was to track the migration of MSCs in tumor-bearing mice; MSCs were also used as drug delivery vehicles. Human breast cancer cells (MDA-MB-231) and anaplastic thyroid cancer cells (CAL62) were transduced with lentiviral particles, to express the Renilla luciferase and mCherry (mCherry-Rluc) reporter genes. Human bone marrow-derived MSCs were transduced with lentiviral particles, to express the firefly luciferase and enhanced green fluorescence protein (Fluc2-eGFP) reporter genes (MSC/Fluc). Luciferase activity of the transduced cells was measured by bioluminescence imaging (BLI). Further in vitro migration assays were performed to confirm cancer cells conditioned medium dependent MSC and doxorubicin (DOX) treated MSC migration. MSCs were loaded with DOX, and their therapeutic effects against the cancer cells were studied in vitro. In vivo MSC/Fluc migration in mice having thyroid or breast cancer xenografts was evaluated after systemic injection. Rluc activity of CAL62/Rluc (R2=0.911), MDA-MB-231/Rluc (R2=0.934) cells and Fluc activity of MSC/Fluc (R2=0.91) cells increased with increasing cell numbers, as seen by BLI. eGFP expression of MSC/Fluc was confirmed by confocal microscopy. Similar migration potential was observed between MSC/Fluc and naïve MSCs in migration assay. DOX treated MSCs migration was not decreased compared than MSCs. Migration of the systemically injected MSC/Fluc cells into tumor xenografts (thyroid and breast cancer) was visualized in animal models (p<0.05) and confirmed by ex vivo (p<0.05) BLI. Additionally, MSCs delivered DOX to CAL62/Rluc and MDA-MB-231/Rluc cells, thereby decreasing their Rluc activities. In this study, we confirmed the migration of MSCs to tumor sites in cancer xenograft models using both in vivo and ex vivo BLI imaging. DOX-pretreated MSCs showed enhanced cytotoxic effects. Therefore, this noninvasive reporter gene (Fluc2)-based BLI may be useful for visualizing in vivo tracking of MSCs, which can be used as a drug delivery vehicle for cancer therapy.
Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Cell Movement , Doxorubicin/administration & dosage , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Animals , Disease Models, Animal , Drug Delivery Systems , Heterografts , Humans , Mice , Transplantation, HeterologousABSTRACT
Colorectal cancer is the most common cancer in both men and women and the second most common cause of cancer-related deaths. Suicide gene-based therapy with suicide gene-transduced mesenchymal stem cells (MSCs) is a promising therapeutic strategy. A tetracycline-controlled Tet-On inducible system used to regulate gene expression may be a useful tool for gene-based therapies. The aim of this study was to develop therapeutic MSCs with a suicide gene that is induced by an artificial stimulus, to validate therapeutic gene expression, and to monitor the MSC therapy for colon cancer using optical molecular imaging. For our study, we designed the Tet-On system using a retroviral vector and developed a response plasmid RetroX-TRE (tetracycline response element) expressing a mutant form of herpes simplex virus thymidine kinase (HSV1-sr39TK) with dual reporters (eGFP-Fluc2). Bone marrow-derived MSCs were transduced using a RetroX-Tet3G (Clontech, CA, USA) regulatory plasmid and RetroX-TRE-HSV1-sr39TK-eGFP-IRES-Fluc2, for a system with a Tet-On (MSC-Tet-TK/Fluc2 or MSC-Tet-TK) or without a Tet-On (MSC-TK/Fluc2 or MSC-TK) function. Suicide gene engineered MSCs were co-cultured with colon cancer cells (CT26/Rluc) in the presence of the prodrug ganciclovir (GCV) after stimulation with or without doxycycline (DOX). Treatment efficiency was monitored by assessing Rluc (CT26/Rluc) and Fluc (MSC-Tet-TK and MSC-TK) activity using optical imaging. The bystander effect of therapeutic MSCs was confirmed in CT26/Rluc cells after GCV treatment. Rluc activity in CT26/Rluc cells decreased significantly with GCV treatment of DOX(+) cells (p < 0.05 and 0.01) whereas no significant changes were observed in DOX(-) cells. In addition, Fluc activity in also decreased significantly with DOX(+) MSC-Tet-TK cells, but no signal was observed in DOX(-) cells. In addition, an MSC-TK bystander effect was also confirmed. We assessed therapy with this system in a colon cancer xenograft model (CT26/Rluc). We successfully transduced cells and developed a Tet-On system with the suicide gene HSV1-sr39TK. Our results confirmed the therapeutic efficiency of a suicide gene with the Tet-On system for colon cancer. In addition, our results provide an innovative therapeutic approach using the Tet-On system to eradicate tumors by administration of MSC-Tet-TK cells with DOX and GCV.
Subject(s)
Colonic Neoplasms/therapy , Genes, Transgenic, Suicide , Mesenchymal Stem Cells/cytology , Molecular Imaging/methods , Animals , Apoptosis , Bystander Effect , Cell Line, Tumor , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/genetics , Doxycycline/pharmacology , Female , Ganciclovir/pharmacology , Humans , Mesenchymal Stem Cells/drug effects , Mice , Optical Imaging , Transduction, Genetic , Xenograft Model Antitumor AssaysABSTRACT
Molecular imaging allows a noninvasive assessment of biochemical and biological processes in living subjects. Treatment strategies for malignant lymphoma depend on histology and tumor stage. For the last two decades, molecular imaging has been the mainstay diagnostic test for the staging of malignant lymphoma and the assessment of response to treatment. This technology enhances our understanding of disease and drug activity during preclinical and clinical drug development. Here, we review molecular imaging applications in drug development, with an emphasis on oncology. Monitoring and assessing the efficacy of anti-cancer therapies in preclinical or clinical models are essential and the multimodal molecular imaging approach may represent a new stage for pharmacologic development in cancer. Monitoring the progress of lymphoma therapy with imaging modalities will help patients. Identifying and addressing key challenges is essential for successful integration of molecular imaging into the drug development process. In this review, we highlight the general usefulness of molecular imaging in drug development and radionuclide-based reporter genes. Further, we discuss the different molecular imaging modalities for lymphoma therapy and their preclinical and clinical applications.