Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Ecol Appl ; 27(3): 916-924, 2017 04.
Article in English | MEDLINE | ID: mdl-28036137

ABSTRACT

Integrated population models (IPMs) provide a unified framework for simultaneously analyzing data sets of different types to estimate vital rates, population size, and dynamics; assess contributions of demographic parameters to population changes; and assess population viability. Strengths of an IPM include the ability to estimate latent parameters and improve the precision of parameter estimates. We present a hierarchical IPM that combines two broad-scale avian monitoring data sets: count data from the North American Breeding Bird Survey (BBS) and capture-recapture data from the Monitoring Avian Productivity and Survivorship (MAPS) program. These data sets are characterized by large numbers of sample sites and observers, factors capable of inducing error in the sampling and observation processes. The IPM integrates the data sets by modeling the population abundance as a first-order autoregressive function of the previous year's population abundance and vital rates. BBS counts were modeled as a log-linear function of the annual index of population abundance, observation effects (observer identity and first survey year), and overdispersion. Vital rates modeled included adult apparent survival, estimated from a transient Cormack-Jolly-Seber model using MAPS data, and recruitment (surviving hatched birds from the previous season + dispersing adults) estimated as a latent parameter. An assessment of the IPM demonstrated it could recover true parameter values from 200 simulated data sets. The IPM was applied to data sets (1992-2008) of two bird species, Gray Catbird (Dumetella carolinensis) and Wood Thrush (Hylocichla mustelina) in the New England/Mid-Atlantic coastal Bird Conservation Region of the United States. The Gray Catbird population was relatively stable (trend +0.4% per yr), while the Wood Thrush population nearly halved (trend -4.5% per yr) over the 17-yr study period. IPM estimates of population growth rates, adult survival, and detection and residency probabilities were similar and as precise as estimates from the stand-alone BBS and CJS models. A benefit of using the IPM was its ability to estimate the latent recruitment parameter. Annual growth rates for both species correlated more with recruitment than survival, and the relationship for Wood Thrush was stronger than for Gray Catbird. The IPM's unified modeling framework facilitates integration of these important data sets.


Subject(s)
Songbirds , Animals , Mid-Atlantic Region , Models, Biological , New England , Population Dynamics , Seasons
2.
Ecology ; 97(11): 3184-3194, 2016 11.
Article in English | MEDLINE | ID: mdl-27870038

ABSTRACT

Stability in population dynamics is an emergent property of the interaction between direct and delayed density dependence, the strengths of which vary with environmental covariates. Analysis of variation across populations in the strength of direct and delayed density dependence can reveal variation in stability properties of populations at the species level. We examined the stability properties of 22 elk/red deer populations in a two-stage analysis. First, we estimated direct and delayed density dependence applying an AR(2) model in a Bayesian hierarchical framework. Second, we plotted the coefficients of direct and delayed density dependence in the Royama parameter plane. We then used a hierarchical approach to test the significance of environmental covariates of direct and delayed density dependence. Three populations exhibited highly stable and convergent dynamics with strong direct, and weak delayed, density dependence. The remaining 19 populations exhibited more complex dynamics characterized by multi-annual fluctuations. Most (15 of 19) of these exhibited a combination of weak to moderate direct and delayed density dependence. Best-fit models included environmental covariates in 17 populations (77% of the total). Of these, interannual variation in growing-season primary productivity and interannual variation in winter temperature were the most common, performing as the best-fit covariate in six and five populations, respectively. Interannual variation in growing-season primary productivity was associated with the weakest combination of direct and delayed density dependence, while interannual variation in winter temperature was associated with the strongest combination of direct and delayed density dependence. These results accord with a classic theoretical prediction that environmental variability should weaken population stability. They furthermore suggest that two forms of environmental variability, one related to forage resources and the other related to abiotic conditions, both reduce stability, but in opposing fashion: one through weakened direct density dependence and the other through strengthened delayed density dependence. Importantly, however, no single abiotic or biotic environmental factor emerged as generally predictive of the strengths of direct or delayed density dependence, nor of the stability properties emerging from their interaction. Our results emphasize the challenges inherent to ascribing primacy to drivers of such parameters at the species level and distribution scale.


Subject(s)
Animal Distribution/physiology , Deer/physiology , Ecosystem , Animals , Bayes Theorem , Deer/classification , Models, Biological , Population Dynamics , Species Specificity
3.
Ecol Evol ; 8(15): 7312-7322, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151151

ABSTRACT

When sighting-based surveys to estimate population densities of large herbivores in tropical dense forests are not practical or affordable, surveys that rely on animal dung are sometimes used. This study tested one such dung-based method by deriving population densities from observed dung densities of six large herbivores (chital, elephant, gaur, muntjac, sambar, and wild pig) in two habitats, dry deciduous forests (DDF) and moist deciduous forests (MDF), within Nagarahole National Park, southern India. Using the program DUNGSURV, dung pile counts, decay rates estimated from field experiments, and defecation rates derived from literature were analyzed together by a model that allows for random events affecting dung decay. Densities of chital were the highest, followed by sambar. Wild pig densities were similar in the two habitats, sambar densities were higher in DDF, and densities of the other species were higher in MDF than in DDF. We compared DUNGSURV estimates with densities estimated using distance sampling in the same season. DUNGSURV estimates were substantially higher for all species in both habitats. These differences highlight the challenges that researchers face in computing unbiased estimates of dung decay rates and in relying on defecation rates from literature. Besides the elephant, this study is the first to rigorously test the efficacy of using a dung-based approach to estimate densities of large herbivore species in Asia, and based on this evaluation, we provide specific recommendations to address issues that require careful consideration before observed dung densities are used to derive animal densities. Our results underline the need for an experimental study of a known population in a fenced reserve to validate the true potential of using dung-based approaches to estimate population densities.

4.
Ecol Evol ; 4(1): 104-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24455165

ABSTRACT

The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.

5.
Sci Rep ; 3: 3125, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24201239

ABSTRACT

Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics.


Subject(s)
Deer , Models, Statistical , Animals , Bayes Theorem , Geography , Markov Chains , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL