Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Vet Res ; 19(1): 171, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741960

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes enteric diseases in pigs leading to substantial financial losses within the industry. The absence of commercial vaccines and limited research on PDCoV vaccines presents significant challenges. Therefore, we evaluated the safety and immunogenicity of recombinant pseudorabies virus (PRV) rPRVXJ-delgE/gI/TK-S through intranasal mucosal immunization in weaned piglets and SPF mice. Results indicated that rPRVXJ-delgE/gI/TK-S safely induced PDCoV S-specific and PRV gB-specific antibodies in piglets, with levels increasing 7 days after immunization. Virus challenge tests demonstrated that rPRVXJ-delgE/gI/TK-S effectively improved piglet survival rates, reduced virus shedding, and alleviated clinical symptoms and pathological damage. Notably, the recombinant virus reduced anti-inflammatory and pro-inflammatory responses by regulating IFN-γ, TNF-α, and IL-1ß secretion after infection. Additionally, rPRVXJ-delgE/gI/TK-S colonized target intestinal segments infected with PDCoV, stimulated the secretion of cytokines by MLVS in mice, stimulated sIgA secretion in different intestinal segments of mice, and improved mucosal immune function. HE and AB/PAS staining confirmed a more complete intestinal mucosal barrier and a significant increase in goblet cell numbers after immunization. In conclusion, rPRVXJ-delgE/gI/TK-S exhibits good immunogenicity and safety in mice and piglets, making it a promising candidate vaccine for PDCoV.


Subject(s)
COVID-19 , Swine Diseases , Animals , Mice , Swine , Immunity, Mucosal , Administration, Intranasal/veterinary , COVID-19/veterinary , Vaccines, Synthetic , Intestines , Antibodies, Viral , Swine Diseases/prevention & control
2.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431853

ABSTRACT

Salmonella Typhimurium (S. Typhimurium), a common foodborne pathogen, severely harms the public and food security. Type I fimbriae (T1F) of S. Typhimurium, plays a crucial role in the pathogenic processes; it mediates the adhesion of bacteria to the mannose receptor on the host cell, assists the bacteria to invade the host cell, and triggers an inflammatory response. Cinnamaldehyde is the main ingredient in cinnamon essential oil. In this study, cinnamaldehyde was demonstrated to inhibit the expression of T1F by hemagglutination inhibition test, transmission electron microscopy, and biofilms. The mechanism of cinnamaldehyde action was studied by proteomics technology, PCR and Western blotting. The results showed that cinnamaldehyde can inhibit T1F in S. typhimurium without the growth of bacteria, by regulating the level of expression and transcription of fimA, fimZ, fimY, fimH and fimW. Proteomics results showed that cinnamaldehyde downregulated the subunits and regulators of T1F. In addition, the invasion assays proved that cinnamaldehyde can indeed reduce the ability of S. typhimurium to adhere to cells. The results of animal experiments showed that the colonization in the intestinal tract and the expression levels of inflammatory cytokine were significantly decreased, and the intestinal mucosal immune factors MUC1 and MUC2 were increased under cinnamaldehyde treatment. Therefore, cinnamaldehyde may be a potential drug to target T1F to treat Salmonella infections.


Subject(s)
Gene Expression Regulation, Bacterial , Salmonella typhimurium , Animals , Salmonella typhimurium/metabolism , Fimbriae, Bacterial/metabolism , Acrolein/pharmacology , Acrolein/metabolism
3.
Heliyon ; 10(13): e33432, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040396

ABSTRACT

In recent years, the epidemiological profile of Getah virus (GETV) has become increasingly serious, posing a huge threat to animal and public health in China. GETV can cause multi-species infection, including horses, pigs, rats, cattle, kangaroos, reptiles and birds. However, there were few reports on the efficiency of the virus entering the host via routes of different systems. In the present study, a GETV strain (SC201807) was obtained from a piglet's blood in 2018 in Sichuan, China. First, we established a quantitative real-time polymerase chain reaction (qRT-PCR) SYBR assay specific to GETV. Then, we evaluated the infection efficiency of different routes using mouse animal model. 108 male mice were randomly divided into four groups as follows: intramuscular, intraoral and intranasal infection routes, and negative control. All mice in the experimental group were inoculated with 4 × 102.85 TCID50 GETV virus. Tissue tropism experiments show that GETV has a wide range of tissue distribution, and intramuscular infection is the first to infect all tissues of the body, and suggest that oral infection may be a new GETV transmission route. Histopathological examination results showed that intramuscular injection of GETV mainly caused different degrees of pathological damage to the tissues, and could rapidly induce a large amount of inflammatory regulatory factors such as IL-6 and TNF-α. Our data may help us to evaluate the risk of transmission of Porcine Getah virus and provide an experimental basis for the prevention and control of Porcine Getah virus.

4.
Microbiol Spectr ; 12(5): e0407123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511956

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Recombination, Genetic , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , China , Virulence/genetics , Mutation , Genome, Viral/genetics
5.
Vet Microbiol ; 290: 110011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310713

ABSTRACT

Senecavirus A (SVA)-associated porcine idiopathic vesicular disease (PIVD) and Pseudorabies (PR) are highly contagious swine disease that pose a significant threat to the global pig industry. In the absence of an effective commercial vaccine, outbreaks caused by SVA have occurred in many parts of the world. In this study, the PRV variant strain PRV-XJ was used as the parental strain to construct a recombinant PRV strain with the TK/gE/gI proteins deletion and the VP3 protein co-expression, named rPRV-XJ-ΔTK/gE/gI-VP3. The results revealed that PRV is a suitable viral live vector for VP3 protein expressing. As a vaccine, rPRV-XJ-ΔTK/gE/gI-VP3 is safe for mice, vaccination with it did not cause any clinical symptoms of PRV. Intranasal immunization with rPRV-XJ-ΔTK/gE/gI-VP3 induced strong cellular immune response and high levels of specific antibody against VP3 and gB and neutralizing antibodies against both PRV and SVA in mice. It provided 100% protection to mice against the challenge of virulent strain PRV-XJ, and alleviated the pathological lesion of heart and liver tissue in SVA infected mice. rPRV-XJ-ΔTK/gE/gI-VP3 appears to be a promising vaccine candidate against PRV and SVA for the control of the PRV variant and SVA.


Subject(s)
Herpesvirus 1, Suid , Picornaviridae , Pseudorabies , Rodent Diseases , Swine Diseases , Viral Vaccines , Swine , Animals , Mice , Viral Envelope Proteins , Antibodies, Viral , Pseudorabies Vaccines
6.
Virulence ; 15(1): 2384564, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39072452

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and ß-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.


Subject(s)
Blood-Testis Barrier , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Sertoli Cells , Testis , Animals , Male , Swine , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/physiology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Sertoli Cells/virology , Sertoli Cells/metabolism , Blood-Testis Barrier/virology , Testis/virology , Testis/pathology , Spermatogonia/virology , Apoptosis , Leydig Cells/virology , Cytokines/metabolism , Testosterone/blood , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics
7.
J Virol Methods ; 325: 114885, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228247

ABSTRACT

Getah virus (GETV) is a mosquito-transmitted disease that affects animals, causing fever, aseptic meningitis, and abortion. Its prevalence in China poses risks to both animal health and public well-being. Currently, there is a scarcity of seroepidemiological data on GETV due to the absence of commercial antibody detection kits for pigs. The aim of this study is to develop a rapid, accurate, and sensitive ELISA, providing a reliable tool for GETV seroepidemiology and laying the foundation for future commercial assay development. In this study, we removed specific hydrophobic domains and intracellular structures from E2 proteins and constructed the recombinant plasmid pCold-TF-E2. The recombinant protein was expressed using a prokaryotic expression system, and efficient purification of the rE2 protein was achieved using a nickel affinity column. The purified rE2 protein is suitable for the development of an indirect ELISA (rE2 ELISA). Following the optimization of reaction conditions for the rE2-ELISA, the cut-off value was 0.356. Additionally, the rE2-ELISA method showed a positive rate of 37.1% for IgG antibodies against GETV when testing 986 pig clinical serum samples collected from pigs in Sichuan between May 2022 and September 2022. The rE2-ELISA method displayed a 95.1% overall agreement with VNT, boasting a sensitivity of 98.2% and a specificity of 92.6%. These results indicate that IgG ELISA based on rE2 protein is an efficient and economical method for the detection of GETV antibodies in pigs, facilitating the diagnosis and prevention of GETV.


Subject(s)
Alphavirus Infections , Alphavirus , Pregnancy , Female , Animals , Swine , Seroepidemiologic Studies , Alphavirus Infections/diagnosis , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G
8.
Anal Chim Acta ; 1318: 342918, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067912

ABSTRACT

Pseudorabies viruses (PRV) pose a major threat to the global pig industry and public health. Rapid, intuitive, affordable, and accurate diagnostic testing is critical for controlling and eradicating infectious diseases. In this study, a portable detection platform based on RPA-CRISPR/EsCas13d was developed. The platform exhibits high sensitivity (1 copy/µL), good specificity, and no cross-reactivity with common pathogens. The platform uses rapid preamplification technology to provide visualization results (lateral flow assays or visual fluorescence) within 1 h. Fifty pig samples (including tissues, oral fluids, and serum) were tested using this platform and real-time quantitative polymerase chain reaction (qPCR), showing 34.0 % (17 of 50) PRV positivity with the portable CRISPR/EsCas13d dual-readout platform, consistent with the qPCR results. These results highlight the stability, sensitivity, efficiency, and low equipment requirements of the portable platform. Additionally, a novel point-of-care test is being developed for clinical use in remote rural and resource-limited areas, which could be a prospective measure for monitoring the progression of pseudorabies and other infectious diseases worldwide.


Subject(s)
CRISPR-Cas Systems , Herpesvirus 1, Suid , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/isolation & purification , Animals , Swine , CRISPR-Cas Systems/genetics , Pseudorabies/diagnosis , Pseudorabies/virology , Swine Diseases/virology , Swine Diseases/diagnosis
9.
Int J Biol Macromol ; : 134151, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059534

ABSTRACT

Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.

10.
Front Microbiol ; 14: 1121177, 2023.
Article in English | MEDLINE | ID: mdl-36910182

ABSTRACT

Introduction: Porcine circovirus 4 (PCV4) was discovered in 2019 and then proved to be pathogenic to piglets. Nevertheless, few studies were currently available about PCV4 infection in species other than pigs and there is no information about the prevalence of PCV4 in dogs. Methods: To fill this gap, 264 dog samples were collected from animal hospitals in the Southwest of China from 2021 to 2022 and screened for PCV4. Moreover, the complete genome of one PCV4 strain (SCABTC-Dog2022) were obtained successfully and shared a high identity (97.9-99.0%) with other PCV4 strains derived from pigs, dairy cows, raccoon dogs and foxes. The SCABTC-Dog2022 were analyzed together with 51 reference sequences. Results and Discussion: The detected results showed a low percentage of PCV-4 DNA (1.14%, 3/264), indicating that PCV4 could be identified in dogs in southwest China. Phylogenetic tree showed that SCABTC-Dog2022 strain derived from dog were clustered in a closed relative and geographically coherent branch with other PCV4 strains collected from four provinces (Sichuan, Fujian, Hunan and Inner Mongolia) of China. To our knowledge, it is the first detection of PCV4 in dogs globally. The association between PCV4 status and clinical syndromes in dogs deserves additional investigations.

11.
Vet Microbiol ; 284: 109815, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348208

ABSTRACT

African swine fever (ASF) is an acute infectious disease that poses a high lethality risk to domestic pigs and wild boars, causing substantial economic losses to the global pig industry. The prevention and control of ASF remain challenging, necessitating the urgent development of a safe and effective vaccine. This study focused on the essential structural protein p72 of ASFV (encoded by the B646L gene) and its chaperone protein pB602L (encoded by the B602L gene) as the target antigenic proteins. Based on CRISPR/Cas9 gene-editing technology, we constructed a live attenuated recombinant pseudorabies virus vector expressing the p72 and pB602L proteins (designated as rPRVXJ-EGFP/B602L/B646L), and assessed its immunization effect in mice. The recombinant virus rPRVXJ-EGFP/B602L/B646L successfully proliferated and demonstrated stable expression of the p72 and pB602L proteins in BHK-21 cells. Moreover, it exhibited excellent safety when used in mice and induced specific humoral and cellular immune responses targeting p72 and pB602L. In addition, it provided complete protection (100%) against the virulent PRV strain (PRV-XJ). These results indicate that the recombinant virus rPRVXJ-EGFP/B602L/B646L possesses robust immunogenicity and safety in mice. In conclusion, PRV represents a promising viral vector for expressing ASFV gene, and our study serves as an essential reference for the development of viral vector vaccines against ASFV.


Subject(s)
African Swine Fever Virus , African Swine Fever , Herpesvirus 1, Suid , Pseudorabies , Swine Diseases , Viral Vaccines , Swine , Animals , Mice , African Swine Fever Virus/genetics , Herpesvirus 1, Suid/genetics , Sus scrofa , Pseudorabies/prevention & control , Viral Vaccines/genetics
12.
J Virol Methods ; 320: 114775, 2023 10.
Article in English | MEDLINE | ID: mdl-37482197

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging discovered coronavirus that causes significant losses in the global swine industry. This study aimed to establish an indirect ELISA method for detecting PDCoV antibodies using the truncated gene of PDCoV spike protein (S). The purified S protein was used as the coating antigen for the polyclonal antibody. The conditions were optimized to establish an indirect ELISA detection method for PDCoV based on the S protein, which showed good specificity and no cross-reaction with SVV-VP1, ASFV-P72, GETV-E2, PRV-gE, etc. The method has high repeatability, with coefficients of variation within and between batches less than 10%. Compared with the commercial kit, the positive coincidence rate is 86.40%, the negative coincidence rate is 89.43%, and the total coincidence rate is 91.76%. This ELISA can be used for PDCoV serological investigation and antibody evaluation. It can also lay the foundation for further research and development of PDCoV S protein ELISA antibody detection kit.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Swine , Coronavirus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods
13.
Front Microbiol ; 14: 1258484, 2023.
Article in English | MEDLINE | ID: mdl-37808320

ABSTRACT

Porcine circovirus type 4 (PCV4) is an emerging circovirus, which has been detected in domestic pigs across various provinces in China and Korea. In this study, we aimed to investigate whether cats are susceptible to PCV4. For this purpose, we collected 116 cat samples from animal hospitals in Sichuan Province, China, between 2021 and 2022. Using a SYBR Green-based real-time PCR assay, we detected PCV4 in 5 out of the 116 clinical samples, indicating a positive rate of 4.31% (5/116) and confirming the presence of PCV4 in cats from Sichuan Province, China. Moreover, we successfully sequenced and analyzed the complete genome of one PCV4 strain (SCGA-Cat) along with 60 reference sequences deposited in the GenBank database. SCGA-Cat exhibited high nucleotide homology (98.2-99.0%) with PCV4 strains from other species, including dogs, pigs, dairy cows, and fur animals. Notably, the SCGA-Cat strain from cats clustered closely with a PCV4 strain derived from a pig collected in Fujian Province, China. To the best of our knowledge, this study represents the first report on the molecular detection of PCV4 in cats worldwide, which prompted us to understand the genetic diversity and cross-species transmission of the ongoing PCV4 cases. However, further investigations are needed to explore the association between PCV4 infection and clinical syndromes in cats.

14.
Front Microbiol ; 14: 1295524, 2023.
Article in English | MEDLINE | ID: mdl-38249453

ABSTRACT

Compared to the classical strain of Pseudorabies virus (PRV), the PRV variant exhibits stronger transmissibility and pathogenicity, causing immense disasters for the global pig industry. Based on this variant, our laboratory has preliminarily constructed a modified pseudorabies virus with deletions in the gE/gI/TK genes. In this study, the protective efficacy of PRV XJ del gI/gE/TK against piglet intestinal damage was evaluated. The results demonstrated that piglets immunized with PRV XJ del gI/gE/TK exhibited alleviated intestinal damage caused by the PRV XJ variant strain. This included reduced viral load, suppressed inflammation, and maintenance of intestinal structure and function. Additionally, PRV XJ del gI/gE/TK also strongly activated the innate immune response in the intestines, increasing the expression of antiviral factor mRNA and the secretion of SIgA to counteract the attack of the PRV XJ variant strain. Our study indicates that PRV XJ del gI/gE/TK can inhibit intestinal damage caused by PRV XJ variant strain and activate the innate immune response in the intestines.

15.
Front Microbiol ; 13: 1052533, 2022.
Article in English | MEDLINE | ID: mdl-36406418

ABSTRACT

Porcine circovirus 4 (PCV4) was identified in 2019 as a novel circovirus species and then proved to be pathogenic to piglets. However, there is a lack of its prevalence in the Southwest of China. To investigate whether PCV4 DNA existed in the Southwest of China, 374 samples were collected from diseased pigs during 2021-2022 and detected by a real-time PCR assay. The results showed that the positive rate of PCV4 was 1.34% (5/374) at sample level, and PCV4 was detected in two of 12 cities, demonstrating that PCV4 could be detected in pig farms in the Southwest of China, but its prevalence was low. Furthermore, one PCV4 strain (SC-GA2022ABTC) was sequenced in this study and shared a high identity (98.1-99.7%) with reference strains at the genome level. Combining genetic evolution analysis with amino acid sequence analysis, three genotypes PCV4a, PCV4b, and PCV4c were temporarily identified, and the SC-GA2022ABTC strain belonged to PCV4c with a specific amino acid pattern (239V for Rep protein, 27N, 28R, and 212M for Cap protein). Phylogenetic tree and amino acid alignment showed that PCV4 had an ancient ancestor with mink circovirus. In conclusion, the present study was the first to report the discovery and the evolutionary analysis of the PCV4 genome in pig herds of the Southwest of China and provide insight into the molecular epidemiology of PCV4.

SELECTION OF CITATIONS
SEARCH DETAIL