Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Genet ; 54: 1-24, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32663048

ABSTRACT

Spermatogonial stem cells (SSCs) are generally characterized by excellent DNA surveillance and repair, resulting in one of the lowest spontaneous mutation rates in the body. However, the barriers to mutagenesis can be overwhelmed under two sets of circumstances. First, replication errors may generate age-dependent mutations that provide the mutant cells with a selective advantage, leading to the clonal expansions responsible for dominant genetic diseases such as Apert syndrome and achondroplasia. The second mechanism centers on the vulnerability of the male germline to oxidative stress and the induction of oxidative DNA damage in spermatozoa. Defective repair of such oxidative damage in the fertilized oocyte results in the creation of mutations in the zygote that can influence the health and well-being of the offspring. A particular hot spot for such oxidative attack on chromosome 15 has been found to align with several mutations responsible for paternally mediated disease, including cancer, psychiatric disorders, and infertility.


Subject(s)
Genetic Diseases, Inborn/genetics , Mutation/genetics , Animals , Chromosomes, Human, Pair 15/genetics , DNA Damage/genetics , Humans , Male , Mutation Rate , Neoplasms/genetics , Oocytes/growth & development , Spermatozoa/growth & development
2.
Hum Reprod ; 38(10): 1861-1871, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37568254

ABSTRACT

In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.


Subject(s)
Reproduction , Semen , Animals , Male , Female , Aging/genetics , Spermatozoa/physiology , Mutation
3.
Mol Cell Proteomics ; 20: 100107, 2021.
Article in English | MEDLINE | ID: mdl-34089863

ABSTRACT

Seminal vesicles are an integral part of the male reproductive accessory gland system. They produce a complex array of secretions containing bioactive constituents that support gamete function and promote reproductive success, with emerging evidence suggesting these secretions are influenced by our environment. Despite their significance, the biology of seminal vesicles remains poorly defined. Here, we complete the first proteomic assessment of mouse seminal vesicles and assess the impact of the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or control daily for five consecutive days prior to collecting seminal vesicle tissue. A total of 5013 proteins were identified in the seminal vesicle proteome with bioinformatic analyses identifying cell proliferation, protein synthesis, cellular death, and survival pathways as prominent biological processes. Secreted proteins were among the most abundant, and several proteins are linked with seminal vesicle phenotypes. Analysis of the effect of acrylamide on the seminal vesicle proteome revealed 311 differentially regulated (FC ± 1.5, p ≤ 0.05, 205 up-regulated, 106 downregulated) proteins, orthogonally validated via immunoblotting and immunohistochemistry. Pathways that initiate protein synthesis to promote cellular survival were prominent among the dysregulated pathways, and rapamycin-insensitive companion of mTOR (RICTOR, p = 6.69E-07) was a top-ranked upstream driver. Oxidative stress was implicated as contributing to protein changes, with acrylamide causing an increase in 8-OHdG in seminal vesicle epithelial cells (fivefold increase, p = 0.016) and the surrounding smooth muscle layer (twofold increase, p = 0.043). Additionally, acrylamide treatment caused a reduction in seminal vesicle secretion weight (36% reduction, p = 0.009) and total protein content (25% reduction, p = 0.017). Together these findings support the interpretation that toxicant exposure influences male accessory gland physiology and highlights the need to consider the response of all male reproductive tract tissues when interpreting the impact of environmental stressors on male reproductive function.


Subject(s)
Acrylamide/toxicity , Environmental Pollutants/toxicity , Seminal Vesicles/drug effects , Animals , Environmental Exposure , Male , Mice , Proteome/drug effects , Proteomics , Seminal Vesicles/metabolism
4.
J Assist Reprod Genet ; 40(1): 83-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515800

ABSTRACT

PURPOSE: Developing optimized techniques for the isolation of human spermatozoa possessing low levels of DNA damage is an important objective for the ART industry. The purpose of this study was to compare a novel electrophoretic system (Felix™) of sperm isolation with a conventional method involving density gradient centrifugation (DGC). METHODS: Five international ART Centres in Australia, India, Sweden, the USA, and China have collaborated in order to compare the quality of the sperm populations isolated by Felix™ and DGC in terms of processing time, sperm concentration, motility, vitality, and DNA integrity as assessed by 3 methods: SCSA, Halo, and TUNEL. RESULTS: Across all centers, 112 comparisons were performed. Although significant differences were noted between centers in terms of the quality of the semen samples subjected for analysis, overall, both methods were equally capable of isolating populations of spermatozoa exhibiting high levels of vitality and progressive motility. The absolute numbers of spermatozoa recovered were significantly (p < 0.001) lower with the Felix™ device although sperm quality was higher with 4/5 centers reporting a significant improvement in DNA integrity relative to DGC (p < 0.01-p < 0.001). In practical terms, the Felix™ device featured a standardized 6 min preparation time whereas clinical DGC protocols varied from center to center but generally took around 40 min to complete. CONCLUSIONS: The Felix™ device is a positive technical development capable of isolating suspensions of highly motile spermatozoa exhibiting low levels of DNA damage in a fraction of the time taken by conventional procedures such as DGC.


Subject(s)
Semen , Sperm Motility , Humans , Male , Cell Separation/methods , Centrifugation, Density Gradient/methods , Spermatozoa , DNA
5.
Hum Reprod ; 37(4): 629-638, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35079808

ABSTRACT

ABSTRACT: Over the past half-century, the world has witnessed a steep decline in fertility rates in virtually every country on Earth. This universal decline in fertility is being driven by increasing prosperity largely through the mediation of social factors, the most powerful of which are the education of women and an accompanying shift in life's purpose away from procreation. In addition, it is clear that environmental and lifestyle factors are also having a profound impact on our reproductive competence particularly in the male where increasing prosperity is associated with a significant rise in the incidence of testicular cancer and a secular decline in semen quality and testosterone levels. On a different timescale, we should also recognize that the increased prosperity associated with the demographic transition greatly reduces the selection pressure on high fertility genes by lowering the rates of infant and childhood mortality. The retention of poor fertility genes within the human population is also being exacerbated by the increased uptake of ART. It is arguable that all of these elements are colluding to drive our species into an infertility trap. If we are to avoid the latter, it will be important to recognize the factors contributing to this phenomenon and adopt the social, political, environmental and lifestyle changes needed to bring this situation under control.


Subject(s)
Infertility , Testicular Neoplasms , Birth Rate , Child , Female , Fertility , Humans , Male , Population Dynamics , Semen Analysis
6.
Reproduction ; 164(6): F79-F94, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35929832

ABSTRACT

In brief: Many aspects of the reproductive process are impacted by oxidative stress. This article summarizes the chemical nature of reactive oxygen species and their role in both the physiological regulation of reproductive processes and the pathophysiology of infertility. Abstract: This article lays out the fundamental principles of oxidative stress. It describes the nature of reactive oxygen species (ROS), the way in which these potentially toxic metabolites interact with cells and how they impact both cellular function and genetic integrity. The mechanisms by which ROS generation is enhanced to the point that the cells' antioxidant defence mechanisms are overwhelmed are also reviewed taking examples from both the male and female reproductive system, with a focus on gametogenesis and fertilization. The important role of external factors in exacerbating oxidative stress and impairing reproductive competence is also examined in terms of their ability to disrupt the physiological redox regulation of reproductive processes. Developing diagnostic and therapeutic strategies to cope with oxidative stress within the reproductive system will depend on the development of a deeper understanding of the nature, source, magnitude, and location of such stress in order to fashion personalized treatments that meet a given patient's clinical needs.


Subject(s)
Antioxidants , Oxidative Stress , Male , Female , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Reproduction , Gametogenesis , Fertilization
7.
Reproduction ; 164(6): F109-F124, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36190194

ABSTRACT

In brief: Post-ovulatory ageing of oocytes leads to poor oocyte and embryo quality as well as abnormalities in offspring. This review provides an update on the contributions of oxidative stress to this process and discusses the current literature surrounding the use of antioxidant media to delay post-ovulatory oocyte ageing. Abstract: Following ovulation, the metaphase II stage oocyte has a limited functional lifespan before succumbing to a process known as post-ovulatory oocyte ageing. This progressive demise occurs both in vivo and in vitro and is accompanied by a deterioration in oocyte quality, leading to a well-defined sequelae of reduced fertilisation rates, poor embryo quality, post-implantation errors, and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been characterised, less is known regarding the molecular mechanisms that drive this process. This review presents an update on the established relationships between the biochemical changes exhibited by the ageing oocyte and the myriad of symptoms associated with the ageing phenotype. In doing so, we consider the molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We highlight the mounting evidence that oxidative stress acts as an initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to disrupt mitochondrial function and directly damage multiple intracellular components of the oocyte such as lipids, proteins, and DNA. Finally, this review addresses emerging strategies for delaying post-ovulatory oocyte ageing with emphasis placed on the promise afforded by the use of selected antioxidants to guide the development of media tailored for the preservation of oocyte integrity during in vitro fertilisation procedures.


Subject(s)
Antioxidants , Oocytes , Female , Animals , Antioxidants/metabolism , Oocytes/metabolism , Oxidative Stress , Lipids
8.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625024

ABSTRACT

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Subject(s)
Seminal Vesicles , Transcriptome , Acrylamide/toxicity , Animals , Cytokines , Female , Male , Mice , Reproduction/genetics
9.
Hum Reprod ; 36(5): 1175-1185, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33532854

ABSTRACT

Assessments of sperm DNA damage are controversial because of perceived uncertainties over the relationship with pregnancy and the limited range of therapies available should positive results be returned. In this article, we highlight recent data supporting a chain of associations between oxidative stress in the male germ line, DNA damage in spermatozoa, defective DNA repair in the oocyte, the mutational load carried by the resulting embryo and the long-term health trajectory of the offspring. Any condition capable of generating oxidative damage in spermatozoa (age, obesity, smoking, prolonged abstinence, varicocele, chemical exposures, radiation etc.) is capable of influencing offspring health in this manner, creating a range of pathologies in the progeny including neuropsychiatric disorders and cancer. If sperm DNA damage is detected, there are several therapeutic interventions that can be introduced to improve DNA quality prior to the use of these cells in ART. We therefore argue that infertility specialists should be engaged in the diagnosis and remediation of sperm DNA damage as a matter of best practice, in order to minimize the risk of adverse health outcomes in children conceived using ART.


Subject(s)
Infertility, Male , Child , DNA Damage , Female , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Oocytes , Oxidative Stress , Pregnancy , Spermatozoa/metabolism
10.
Reproduction ; 159(4): R189-R201, 2020 04.
Article in English | MEDLINE | ID: mdl-31846434

ABSTRACT

Male and female germ lines are vulnerable to oxidative stress. In spermatozoa, such stress triggers a lipid peroxidation cascade that culminates in the generation of electrophilic lipid aldehydes that bind to DNA and a raft of proteins involved in the delivery of functionally competent cells. One set of targets for these aldehydes are the proteins of the mitochondrial electron transport chain. When this interaction occurs, mitochondrial ROS generation is enhanced leading to the sustained generation of oxidative damage in a self-perpetuating cycle. Such damage affects all aspects of sperm function including motility, sperm-egg recognition, acrosomal exocytosis and sperm-oocyte fusion. Oxidative stress in the male germ line also attacks the integrity of sperm DNA with potential impacts on the developmental capacity of embryos and the health and wellbeing of the offspring. Potential pathways of reactive oxygen species (ROS) generation in male germ cells could involve enhanced lipoxygenase activity, activation of NADPH oxidase and/or electron leakage from mitochondria. Similarly, in the female germ line, both the induction of oocyte senescence following ovulation and the deterioration of oocyte quality with maternal age appear to involve the generation of oxidative damage. In this case, the mitochondria appear to be a particularly important source of ROS compromising the viability and fertilizability of the oocyte and interfering with the normal segregation of chromosomes during meiosis. In light of these considerations, antioxidants should have some role to play in the preservation of reproductive function in both men and women; however, we still await appropriate trials to test this hypothesis.


Subject(s)
Infertility/etiology , Oocytes/metabolism , Oxidative Stress , Spermatozoa/metabolism , Antioxidants/therapeutic use , Female , Humans , Infertility/drug therapy , Male
11.
BMC Biol ; 17(1): 86, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672133

ABSTRACT

BACKGROUND: The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in spermatozoa that are required for membrane fusion. RESULTS: Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins. At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1). This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure of IZUMO1 redistribution. CONCLUSIONS: Collectively, this study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.


Subject(s)
Fertilization/genetics , Glycoproteins/genetics , Immunoglobulins/genetics , Membrane Proteins/genetics , Spermatozoa/physiology , Animals , Glycoproteins/metabolism , Immunoglobulins/metabolism , Male , Membrane Proteins/metabolism , Mice
12.
J Biol Chem ; 293(49): 18944-18964, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30305393

ABSTRACT

An increase in oxidative protein damage is a leading contributor to the age-associated decline in oocyte quality. By removing such damaged proteins, the proteasome plays an essential role in maintaining the fidelity of oocyte meiosis. In this study, we established that decreased proteasome activity in naturally aged, germinal vesicle (GV) mouse oocytes positively correlates with increased protein modification by the lipid aldehyde 4-hydroxynonenal (4-HNE). Furthermore, attenuation of proteasome activity in GV oocytes of young animals was accompanied by an increase in 4-HNE-modified proteins, including α-tubulin, thereby contributing to a reduction in tubulin polymerization, microtubule stability, and integrity of oocyte meiosis. A decrease in proteasome activity was also recapitulated in the GV oocytes of young animals following exposure to oxidative insults in the form of either hydrogen peroxide (H2O2) or 4-HNE. We also observed that upon oxidative insult, 4-HNE exhibits elevated adduction to multiple proteasomal subunits. Notably, the inclusion of the antioxidant penicillamine, to limit propagation of oxidative stress cascades, led to a complete recovery of proteasome activity and enhanced clearance of 4-HNE-adducted α-tubulin during a 6-h post-treatment recovery period. This strategy also proved effective in reducing the incidence of oxidative stress-induced aneuploidy following in vitro oocyte maturation, but was ineffective for naturally aged oocytes. Taken together, our results implicate proteasome dysfunction as an important factor in the accumulation of oxidatively induced protein damage in the female germline. This discovery holds promise for the design of therapeutic interventions to address the age-dependent decline in oocyte quality.


Subject(s)
Aldehydes/metabolism , Oocytes/metabolism , Proteasome Endopeptidase Complex/metabolism , Aneuploidy , Animals , Female , Hydrogen Peroxide/metabolism , Mice, Inbred C57BL , Oocytes/physiology , Oxidation-Reduction , Oxidative Stress/physiology , Penicillamine/pharmacology , Protein Processing, Post-Translational , Tubulin/metabolism , Tubulin Modulators/metabolism
13.
Biol Reprod ; 100(5): 1275-1289, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30715203

ABSTRACT

Diabetes is associated with poor oocyte quality and the dysregulation of ovarian function and is thus a leading contributor to the increasing prevalence of female reproductive pathologies. Accordingly, it is well-established that insulin fulfills a key role in the regulation of several facets of female reproduction. What remains less certain is whether proinsulin C-peptide, which has recently been implicated in cellular signaling cascades, holds a functional role in the female germline. In the present study, we examined the expression of insulin, C-peptide, and its purported receptor; GPR146, within the mouse ovary and oocyte. Our data establish the presence of abundant C-peptide within follicular fluid and raise the prospect that this bioactive peptide is internalized by oocytes in a G-protein coupled receptor-dependent manner. Further, our data reveal that internalized C-peptide undergoes pronounced subcellular relocalization from the ooplasm to the pronuclei postfertilization. The application of immunoprecipitation analysis and mass spectrometry identified breast cancer type 2 susceptibility protein (BRCA2), the meiotic resumption/DNA repair protein, as a primary binding partner for C-peptide within the oocyte. Collectively, these findings establish a novel accumulation profile for C-peptide in the female germline and provide the first evidence for an interaction between C-peptide and BRCA2. This interaction is particularly intriguing when considering the propensity for oocytes from diabetic women to experience aberrant meiotic resumption and perturbation of traditional DNA repair processes. This therefore provides a clear imperative for further investigation of the implications of dysregulated C-peptide production in these individuals.


Subject(s)
C-Peptide/genetics , Embryonic Development , Oocytes/metabolism , Oogenesis , Animals , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Blastocyst/cytology , Blastocyst/drug effects , C-Peptide/metabolism , C-Peptide/pharmacology , Cells, Cultured , Cumulus Cells/cytology , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Female , Fertilization in Vitro/veterinary , Germ Cells/cytology , Germ Cells/drug effects , Germ Cells/metabolism , In Vitro Oocyte Maturation Techniques/methods , In Vitro Oocyte Maturation Techniques/veterinary , Male , Meiosis/drug effects , Meiosis/genetics , Meiosis/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Oocytes/cytology , Oocytes/drug effects , Oogenesis/drug effects , Oogenesis/genetics
14.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31201419

ABSTRACT

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Subject(s)
CRISPR-Cas Systems , Fertility/genetics , Gene Editing , Gene Expression Regulation/physiology , Testis/metabolism , Animals , Humans , Infertility, Male/genetics , Male , Mice , Mice, Knockout , Transcriptome
15.
Mol Hum Reprod ; 25(5): 241-256, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30865280

ABSTRACT

Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models.


Subject(s)
Ferroptosis/drug effects , Gene Expression Regulation, Developmental/drug effects , Lipid Peroxidation/drug effects , Oxidants/pharmacology , Spermatids/drug effects , Aldehydes/antagonists & inhibitors , Aldehydes/pharmacology , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Carbolines/antagonists & inhibitors , Carbolines/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Survival/drug effects , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Cyclohexylamines/pharmacology , Deferoxamine/pharmacology , Ferroptosis/genetics , Humans , Infertility/genetics , Male , Mice , Oxidative Stress , Phenylenediamines/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Piperazines/antagonists & inhibitors , Piperazines/pharmacology , Primary Cell Culture , Spermatids/cytology , Spermatids/metabolism , Testis/cytology , Testis/drug effects , Testis/metabolism
16.
Reproduction ; 158(2): 169-179, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31226694

ABSTRACT

Male fertility and sperm quality are negatively impacted by obesity. Furthermore, recent evidence has shown that male offspring from obese rat mothers also have reduced sperm quality and fertility. Here, we extend work in this area by comparing the effects of both maternal obesity and offspring post-weaning diet-induced obesity, as well as their combination, on sperm quality in mice. We additionally tested whether administration of the NAD+-booster nicotinamide mononucleotide (NMN) can ameliorate the negative effects of obesity and maternal obesity on sperm quality. We previously showed that intraperitoneal (i.p.) injection of NMN can reduce the metabolic deficits induced by maternal obesity or post-weaning dietary obesity in mice. In this study, female mice were fed a high-fat diet (HFD) for 6 weeks until they were 18% heavier than a control diet group. Thereafter, HFD and control female mice were mated with control diet males, and male offspring were weaned into groups receiving control or HFD. At 30 weeks of age, mice received 500 mg/kg body weight NMN or vehicle PBS i.p. for 21 days. As expected, adiposity was increased by both maternal and post-weaning HFD but reduced by NMN supplementation. Post-weaning HFD reduced sperm count and motility, while maternal HFD increased offspring sperm DNA fragmentation and levels of aberrant sperm chromatin. There was no evidence that the combination of post-weaning and maternal HFD exacerbated the impacts in sperm quality suggesting that they impact spermatogenesis through different mechanisms. Surprisingly NMN reduced sperm count, vitality and increased sperm oxidative DNA damage, which was associated with increased NAD+ in testes. A subsequent experiment using oral NMN at 400 mg/kg body weight was not associated with reduced sperm viability, oxidative stress, mitochondrial dysfunction or increased NAD+ in testes, suggesting that the negative impacts on sperm could be dependent on dose or mode of administration.


Subject(s)
Infertility, Male/etiology , Nicotinamide Mononucleotide/pharmacology , Obesity, Maternal , Prenatal Exposure Delayed Effects , Spermatozoa/drug effects , Animals , Female , Male , Mice, Inbred C57BL , Pregnancy
17.
Biol Reprod ; 98(4): 593-606, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351587

ABSTRACT

The reproductive consequences of global warming are not currently understood. In order to address this issue, we have examined the reproductive consequences of exposing male mice to a mild heat stress. For this purpose, adult male mice were exposed to an elevated ambient temperature of 35°C under two exposure models. The first involved acute exposure for 24 h, followed by recovery periods between 1 day and 6 weeks. The alternative heating regimen involved a daily exposure of 8 h for periods of 1 or 2 weeks. In our acute model, we identified elevated sperm mitochondrial ROS generation (P < 0.05), increased sperm membrane fluidity (P < 0.05), DNA damage in the form of single-strand breaks (P < 0.001), and oxidative DNA damage (P < 0.05), characteristic of an oxidative stress cascade. This DNA damage was detected in pachytene spermatocytes (P < 0.001) and round spermatids (P < 0.001) isolated from testes after 1 day heat recovery. Despite these lesions, the spermatozoa of heat-treated mice exhibited no differences in their ability to achieve hallmarks of capacitation or to fertilize the oocyte and support development of embryos to the blastocyst stage (all P > 0.05). Collectively, our acute heat stress model supports the existence of heat susceptible stages of germ cell development, with the round spermatids being most perturbed and spermatogonial stem cells exhibiting resistance to this insult. Such findings were complemented by our chronic heat stress model, which further supported the vulnerability of the round spermatid population.


Subject(s)
DNA Damage/physiology , Heat-Shock Response/physiology , Hot Temperature , Mitochondria/metabolism , Oxidative Stress/physiology , Spermatozoa/metabolism , Animals , DNA Fragmentation , Male , Mice , Reactive Oxygen Species/metabolism , Spermatids/metabolism , Spermatocytes/metabolism
18.
Reproduction ; 156(3): 269-282, 2018 09.
Article in English | MEDLINE | ID: mdl-29921625

ABSTRACT

The Big Blue λSelect-cII selection system has been employed along with whole-exome sequencing to examine the susceptibility of the male germ line to mutation in two challenging situations (i) exposure to a chemotherapeutic regime including bleomycin, etoposide and cis-platinum (BEP) and (ii) the ageing process. A 3-week exposure to BEP induced complete azoospermia associated with a loss of developing germ cells and extensive vacuolization of Sertoli cell cytoplasm. Following cessation of treatment, spermatozoa first appeared in the caput epididymis after 6 weeks and by 12 weeks motile spermatozoa could be recovered from the cauda, although the count (P < 0.001) and motility (P < 0.01) of these cells were significantly reduced and superoxide generation was significantly elevated (P < 0.001). Despite this increase in free radical generation, no evidence of chromatin instability was detected in these spermatozoa. Furthermore, embryos obtained from females mated at this 12-week time point showed no evidence of an increased mutational load. Similarly, progressive ageing of Big Blue mice had no impact on the quality of the spermatozoa, fertility or mutation frequency in the offspring despite a significant increase in the mutational load carried by somatic tissues such as the liver (P < 0.05). We conclude that the male germ line is highly resistant to mutation in keeping with the disposable soma hypothesis, which posits that genetic integrity in the germ cells will be maintained at the expense of the soma, in light of the former's sentinel position in safeguarding the stability of the genome.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Genome/physiology , Germ Cells/drug effects , Mutation/genetics , Aging , Animals , Azoospermia/chemically induced , Bleomycin/adverse effects , Chromatin/drug effects , Cisplatin/adverse effects , Etoposide/adverse effects , Female , Fertility , Genome/drug effects , Male , Mice , Pregnancy , Spermatozoa/drug effects , Spermatozoa/physiology , Spermatozoa/ultrastructure
19.
Cell Mol Life Sci ; 74(3): 469-485, 2017 02.
Article in English | MEDLINE | ID: mdl-27604868

ABSTRACT

Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.


Subject(s)
Calcium/metabolism , Oocytes/metabolism , Zygote/metabolism , Animals , Cations, Divalent/metabolism , DNA Repair , Embryonic Development , Epigenesis, Genetic , Fertilization , Humans , Oocytes/cytology , Phosphorylation , Protein Processing, Post-Translational , Zygote/cytology
20.
Proteomics ; 17(17-18)2017 Sep.
Article in English | MEDLINE | ID: mdl-28782881

ABSTRACT

Early pregnancy in the mare is a poorly understood, high risk period during which the embryo communicates its presence to the maternal endometrium. Remarkably, the maternal recognition of pregnancy signal is unknown in the horse. This study aimed to profile the proteins secreted by equine blastocysts into their immediate environment, along with proteins contained in the blastocoel and within the acellular embryo capsule. Embryos were recovered on day 8 after ovulation and cultured for 48 hours. Secretomes of day 9 and day 10 embryos were analyzed by LC-MS/MS and supported by analysis of blastocoel fluid and embryo capsule. Analyses revealed 72 (24 h) and 97 (48 h) unique protein IDs in the embryo secretome, 732 protein IDs in blastocoel fluid, and 11 proteins IDs in the embryo capsule. Novel findings of interest include secretion of a pregnancy specific proteinase (PAG) by the equine embryo at day 10, along with detection of a prostaglandin receptor inhibiting protein (PTGFRN) and a progesterone potentiating factor (FKBP4) in blastocoel fluid. This is the first comprehensive proteomic analysis of the equine embryo secretome, and provides new insights into the unique physiology of early pregnancy in this species.


Subject(s)
Blastocyst/metabolism , Embryo, Mammalian/metabolism , Horses/embryology , Horses/metabolism , Peptide Fragments/metabolism , Pregnancy Maintenance , Animals , Embryo, Mammalian/cytology , Female , Pregnancy , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL