Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Trends Analyt Chem ; 153: 116659, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35527799

ABSTRACT

Viral infections have been proven a severe threat to human beings, and the pandemic of Coronavirus Disease 2019 (COVID-19) has become a societal health concern, including mental distress and morbidity. Therefore, the early diagnosis and differentiation of viral infections are the prerequisite for curbing the local and global spread of viruses. To this end, carbon nanotubes (CNTs) based virus detection strategies are developed that provide feasible alternatives to conventional diagnostic techniques. Here in this review, an overview of the design and engineering of CNTs-based sensors for virus detection is summarized, followed by the nano-bio interactions used in developing biosensors. Then, we classify the viral sensors into covalently engineered CNTs, non-covalently engineered CNTs, and size-tunable CNTs arrays for viral detection, based on the type of CNTs-based nano-bio interfaces. Finally, the current challenges and prospects of CNTs-based sensors for virus detection are discussed.

2.
Nanotechnology ; 33(48)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-35998539

ABSTRACT

In this work, an electrochemical immunosensor based on black phosphorus nanosheets (BPNS)/poly(allylamine hydrochloride) (PAH) nanocomposite modified glassy carbon electrode was developed for the detection of ovarian cancer biomarker HE4. PAH has been applied to retain BPNS in its original honeycomb structure and to anchor biomolecules electrostatically on the transducer surface. The as synthesized nanocomposite was characterized by zeta potential analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy. Subsequently, the performance of the electrochemical immunosensor was evaluated through cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Under the optimal condition, the developed electrochemical immunosensor permitted to detect HE4 with a linear range of 0.1-300 ng ml-1and a detection limit of 0.01 ng ml-1. The developed sensor exhibited good selectivity and specificity to HE4 with negligible interference effect from common biomolecules like bovine serum albumin, lysozyme, protamine, glucose, fructose, hemoglobin and fetal bovine serum. Further, practical application of developed electrochemical immunosensor was demonstrated in spiked human serum which showed satisfactory recovery percentages.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Humans , Immunoassay/methods , Limit of Detection , Phosphorus , Polyamines
3.
Adv Healthc Mater ; 12(26): e2300871, 2023 10.
Article in English | MEDLINE | ID: mdl-37204046

ABSTRACT

Ferroptosis is a form of programmed cell death and plays an important role in many diseases. Dihydroorotate dehydrogenase (DHODH) and glutathione peroxidase 4 (GPX4) play major roles in cell resistance to ferroptosis. Therefore, inactivation of these proteins provides an excellent opportunity for efficient ferroptosis-based synergistic cancer therapy. In this study, a multifunctional nanoagent (BPNpro ) containing a GPX4 targeting boron dipyrromethene (Bodipy) probe (BP) and a DHODH targeting proteolysis targeting chimera (PROTAC) is reported. BPNpro is prepared using a nanoprecipitation method in the presence of a thermoresponsive liposome, where BP is encapsulated inside and the cathepsin B (CatB)-cleavable PROTAC peptide (DPCP) is modified on the outer surface. In the presence of near-infrared (NIR) photoirradiation, BPNpro is melted and BP is released in tumor cells. Subsequently, BP inhibits the activity of GPX4 by covalently bonding with the selenocysteine at the enzyme active site. In addition, DPCP achieves sustained degradation of DHODH upon activation by CatB overexpressed in the tumor. The synergistic deactivation of GPX4 and DHODH induces extensive ferroptosis and subsequent cell death. In vivo and in vitro studies clearly show that the proposed ferroptosis therapy provides excellent antitumor effect.


Subject(s)
Dihydroorotate Dehydrogenase , Ferroptosis , Neoplasms , Humans , Boron , Ferroptosis/genetics , Ferroptosis/physiology , Neoplasms/drug therapy , Neoplasms/physiopathology
4.
Anal Chim Acta ; 1260: 341173, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37121649

ABSTRACT

Fluorescence-based visual assays have sparked tremendous attention in on-site detection due to their obvious color gradient changes and high sensitivity. In this study, a novel emission wavelength shift-based visual sensing platform is constructed to detect glucose based on the oxidation of Rhodamine B (RhB). MnO2 nanosheets (MnO2 NS) with strong oxidizing properties were introduced to oxidize RhB, which resulted in a blue shift in the emission wavelength, and a visual color changed of the fluorescence from orange-red to green. The oxidation reaction could be inhibited via reducing and destroying MnO2 NS by H2O2, which was produced by the oxidizing procedure of glucose in the presence of glucose oxidase (GOx). A series of wavelength shifts and fluorescence color variations appeared with the addition of various amounts of glucose. A ratiometric fluorescence glucose sensor with a lowest recorded concentration of 0.25 µM was developed. Meanwhile, test paper-based assays integrated with the smartphone platform were established for the sensing of glucose by means of the significant fluorescence color changes, offering a reliable, sensitive, and portable on-site assay of glucose.


Subject(s)
Glucose , Smartphone , Fluorescence , Hydrogen Peroxide , Manganese Compounds , Oxides , Fluorescent Dyes , Limit of Detection
5.
J Mater Chem B ; 11(40): 9712-9720, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37791404

ABSTRACT

The development of organic dyes with emission peaks in the second near-infrared window (NIR-II 1000-1700 nm) is highly desirable for in vivo imaging and imaging-guided phototheranostics. However, the lack of appropriate molecular frameworks and the challenges associated with complex synthesis critically hinder the development of new candidate fluorophores. J-Aggregation is considered as a smart and straightforward way to construct such a therapeutic agent with NIR-II fluorescence imaging properties. Here, we present the design and synthesis of an aza-BODIPY probe (TA). Upon encapsulation within the amphiphilic polymer DSPEG-PEG2000-NH2, TA underwent self-assembly and formed J-aggregates (TAJ NPs), which showed emission at 1020 nm. High spatial resolution and adequate signal-to-noise ratio of the TAJ NPs are demonstrated for noninvasive bioimaging of the vasculature, lymph nodes and bones of mice in the NIR-II region. Moreover, the TAJ NPs exhibited good tumor enrichment efficiency with reduced liver accumulation and significant imaging-guided phototherapy performance against lung cancer cells. Taken together, this work not only introduces a new NIR-II imaging and phototheranostic agent based on J-aggregates, but also provides insight into the development of versatile organic dyes for future clinical implementation.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Nanoparticles/chemistry , Neoplasms/therapy , Boron Compounds , Fluorescent Dyes/chemistry
6.
J Mater Chem B ; 10(5): 728-736, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35019925

ABSTRACT

Octahedral SrMoO4 nanoparticles (NPs) with a high degree of crystallinity and controlled size (250-350 nm) were synthesized for the first time by employing a facile hydrothermal method. The prepared NPs were composited with a carboxyl group bearing conducting polymer (2,2:5,2-terthiophene-3-(p-benzoic acid, TBA)) to attain a stable sensor probe (pTBA/SrMoO4) which was analyzed using various surface analysis methods. The catalytic performance of the composite electrode was explored as an oxidation catalyst for biological molecules through anchoring on the conducting polymer layer, which functioned as a matrix to enhance the stability and selectivity of the sensor probe. The pTBA/SrMoO4 coated on glassy carbon displayed excellent electrocatalytic performance for the oxidation of some biologically important molecules, including dopamine (DA) in neuronal cells. The sensor immobilized with the catalyst showed an excellent response for DA with a dynamic range between 0.2 and 500 µM and a detection limit of 5 nM. The proposed sensor demonstrates the detection of trace DA released from PC12 cells under K+ stimulation, followed by inhibition of the release of exogenic DA by a Ca2+ channel blocker (nifedipine). The developed method provides an interesting way to monitor the effect of extracellular substances on living cells and the drug potency test.


Subject(s)
Biosensing Techniques , Nanoparticles , Animals , Biosensing Techniques/methods , Dopamine/analysis , Electrodes , Polymers , Rats
7.
Polymers (Basel) ; 13(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34685250

ABSTRACT

This paper proposes a multi-scale analysis technique based on the micromechanics of failure (MMF) to predict and investigate the damage progression and ultimate strength at failure of laminated composites. A lamina's representative volume element (RVE) is developed to predict and calculate constituent stresses. Damages that occurred in the constituents are calculated using separate failure criteria for both fiber and matrix. Subsequently, the volume-based damage homogenization technique is utilized to prevent the localization of damage throughout the total matrix zone. The proposed multiscale analysis procedure is then used to investigate the notched and unnotched behavior of three multi-directional composite layups, [30, 60, 90, -60, 30]2S, [0, 45, 90, -45]2S, and [60, 0, -60]3S, subjected to static tension and compression loading. The specimen is fabricated from unidirectionally reinforced composite (IM7/977-3). The prediction of ultimate strength at failure and equivalent stiffness are then benchmarked against the experimental test data. The comparative analysis with various failure models is also carried out to validate the proposed model. MMF demonstrated the capability to correctly predict the ultimate strength at failure for a range of multidirectional composites laminates under tensile and compressive load. The numerically predicted findings revealed a good agreement with the experimental test data. Out of the three investigated composite layups, the simulated results for the quasi-isotropic [0, 45, 90, -45]2S layup agreed extremely well with the experimental results with all the percentage errors within 10% of the measured failure loads.

8.
Adv Colloid Interface Sci ; 283: 102240, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32858409

ABSTRACT

Over the past few years, surface pressure measurement has fundamental importance in many areas, particularly, aerodynamic research. Conventional methods involve pressure taps, but due to the nature of these pressure taps, only pressure information of isolated points on model surface is available, which limit their applications in aerodynamics studies. Recently the newly developed approach, pressure sensitive paint (PSP) has revolutionized such pressure measurements and various PSP materials have been developed for aerodynamics research. Hence, the main focus of this review is to study the interactions of polymers with different oxygen probes and polymeric role as supporting material in the maturation of PSP. In this review, the selected PSP materials are categorically elucidated in terms of their advantages and limitations to give a fair insight about their applicability. Further, we have summarized and articulated such particular optical oxygen sensing materials either that have been used as PSP or have potential to be used as PSP materials.

9.
ACS Appl Mater Interfaces ; 12(42): 47320-47329, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33023289

ABSTRACT

Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 µM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.


Subject(s)
Copper/chemistry , Graphite/chemistry , Uric Acid/analysis , Xanthine/analysis , Electrodes , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL