Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Cells ; 28(5): 374-382, 2023 May.
Article in English | MEDLINE | ID: mdl-36811310

ABSTRACT

Human epidermal growth factor receptor (HER) family proteins are currently major targets of therapeutic monoclonal antibodies against various epithelial cancers. However, the resistance of cancer cells to HER family-targeted therapies, which may be caused by cancer heterogeneity and persistent HER phosphorylation, often reduces overall therapeutic effects. We herein showed that a newly discovered molecular complex between CD98 and HER2 affected HER function and cancer cell growth. The immunoprecipitation of the HER2 or HER3 protein from lysates of SKBR3 breast cancer (BrCa) cells revealed the HER2-CD98 or HER3-CD98 complex. The knockdown of CD98 by small interfering RNAs inhibited the phosphorylation of HER2 in SKBR3 cells. A bispecific antibody (BsAb) that recognized the HER2 and CD98 proteins was constructed from a humanized anti-HER2 (SER4) IgG and an anti-CD98 (HBJ127) single chain variable fragment, and this BsAb significantly inhibited the cell growth of SKBR3 cells. Prior to the inhibition of AKT phosphorylation, BsAb inhibited the phosphorylation of HER2, however, significant inhibition of HER2 phosphorylation was not observed in anti-HER2 pertuzumab, trastuzumab, SER4 or anti-CD98 HBJ127 in SKBR3 cells. The dual targeting of HER2 and CD98 has potential as a new therapeutic strategy for BrCa.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Trastuzumab/metabolism , Trastuzumab/therapeutic use , Antibodies, Monoclonal/metabolism , Phosphorylation , Cell Line, Tumor
2.
Nucleic Acids Res ; 48(11): 6223-6233, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32374873

ABSTRACT

As cells encounter adverse environmental conditions, such as hypoxia, oxidative stress or nutrient deprivation, they trigger stress response pathways to protect themselves until transient stresses have passed. Inhibition of translation is a key component of such cellular stress responses and mounting evidence has revealed the importance of a class of tRNA-derived small RNAs called tiRNAs in this process. The most potent of these small RNAs are those with the capability of assembling into tetrameric G-quadruplex (G4) structures. However, the mechanism by which these small RNAs inhibit translation has yet to be elucidated. Here we show that eIF4G, the major scaffolding protein in the translation initiation complex, directly binds G4s and this activity is required for tiRNA-mediated translation repression. Targeting of eIF4G results in an impairment of 40S ribosome scanning on mRNAs leading to the formation of eIF2α-independent stress granules. Our data reveals the mechanism by which tiRNAs inhibit translation and demonstrates novel activity for eIF4G in the regulation of translation.


Subject(s)
Eukaryotic Initiation Factor-4G/metabolism , G-Quadruplexes , Protein Biosynthesis , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-4F/chemistry , Eukaryotic Initiation Factor-4F/metabolism , Humans , Peptide Chain Initiation, Translational , Phosphoproteins/metabolism , Protein Domains , RNA, Messenger/metabolism , RNA, Transfer/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism
3.
Nucleic Acids Res ; 48(22): 12874-12888, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32785615

ABSTRACT

A major proportion of extracellular RNAs (exRNAs) do not copurify with extracellular vesicles (EVs) and remain in ultracentrifugation supernatants of cell-conditioned medium or mammalian blood serum. However, little is known about exRNAs beyond EVs. We have previously shown that the composition of the nonvesicular exRNA fraction is highly biased toward specific tRNA-derived fragments capable of forming RNase-protecting dimers. To solve the problem of stability in exRNA analysis, we developed a method based on sequencing the size exclusion chromatography (SEC) fractions of nonvesicular extracellular samples treated with RNase inhibitors (RI). This method revealed dramatic compositional changes in exRNA population when enzymatic RNA degradation was inhibited. We demonstrated the presence of ribosomes and full-length tRNAs in cell-conditioned medium of a variety of mammalian cell lines. Their fragmentation generates some small RNAs that are highly resistant to degradation. The extracellular biogenesis of some of the most abundant exRNAs demonstrates that extracellular abundance is not a reliable input to estimate RNA secretion rates. Finally, we showed that chromatographic fractions containing extracellular ribosomes are probably not silent from an immunological perspective and could possibly be decoded as damage-associated molecular patterns.


Subject(s)
Extracellular Vesicles/genetics , RNA, Transfer/genetics , RNA/genetics , Ribosomes/genetics , Animals , Culture Media, Conditioned/pharmacology , Enzyme Inhibitors/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Ribonucleases/antagonists & inhibitors , Ribonucleases/genetics
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361884

ABSTRACT

Under stress conditions, transfer RNAs (tRNAs) are cleaved by stress-responsive RNases such as angiogenin, generating tRNA-derived RNAs called tiRNAs. As tiRNAs contribute to cytoprotection through inhibition of translation and prevention of apoptosis, the regulation of tiRNA production is critical for cellular stress response. Here, we show that RTCB ligase complex (RTCB-LC), an RNA ligase complex involved in endoplasmic reticulum (ER) stress response and precursor tRNA splicing, negatively regulates stress-induced tiRNA production. Knockdown of RTCB significantly increased stress-induced tiRNA production, suggesting that RTCB-LC negatively regulates tiRNA production. Gel-purified tiRNAs were repaired to full-length tRNAs by RtcB in vitro, suggesting that RTCB-LC can generate full length tRNAs from tiRNAs. As RTCB-LC is inhibited under oxidative stress, we further investigated whether tiRNA production is promoted through the inhibition of RTCB-LC under oxidative stress. Although hydrogen peroxide (H2O2) itself did not induce tiRNA production, it rapidly boosted tiRNA production under the condition where stress-responsive RNases are activated. We propose a model of stress-induced tiRNA production consisting of two factors, a trigger and booster. This RTCB-LC-mediated boosting mechanism may contribute to the effective stress response in the cell.


Subject(s)
Hydrogen Peroxide , RNA, Transfer , Hydrogen Peroxide/pharmacology , RNA, Transfer/metabolism , Oxidative Stress , RNA Splicing , Ligases/genetics
5.
RNA Biol ; 18(12): 2546-2555, 2021 12.
Article in English | MEDLINE | ID: mdl-34085908

ABSTRACT

Under adverse conditions, tRNAs are processed into fragments called tRNA-derived stress-induced RNAs (tiRNAs) by stress-responsive ribonucleases (RNases) such as angiogenin (ANG). Recent studies have reported several biological functions of synthetic tiRNAs lacking post-transcriptional modifications found on endogenous tiRNAs. Here we describe a simple and reproducible method to efficiently isolate ANG-cleaved tiRNAs from endogenous tRNAs. Using this in vitro method, more than 50% of mature tRNAs are cleaved into tiRNAs which can be enriched using complementary oligonucleotides. Using this method, the yield of isolated endogenous 5'-tiRNAGly-GCC was increased about fivefold compared to when tiRNAs were obtained by cellular treatment of ANG. Although the non-specific ribonuclease activity of ANG is much lower than that of RNase A, we show that ANG cleaves physiologically folded tRNAs as efficiently as bovine RNase A. These results suggest that ANG is highly specialized to cleave physiologically folded tRNAs. Our method will greatly facilitate the analysis of endogenous tiRNAs to elucidate the physiological functions of ANG.


Subject(s)
Angiogenesis Inducing Agents/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , Ribonuclease, Pancreatic/metabolism , Humans , RNA, Transfer/genetics , Ribonuclease, Pancreatic/genetics , Tumor Cells, Cultured
6.
RNA Biol ; 17(8): 1116-1124, 2020 08.
Article in English | MEDLINE | ID: mdl-32116132

ABSTRACT

Recent transcriptome-wide studies have identified a diverse pool of transfer RNA (tRNA)-derived RNAs or tRNA-derived fragments (tRFs). Some of these RNAs have been demonstrated to be functional and involved in multiple biological processes ranging from the regulation of gene expression to transgenerational epigenetic inheritance. Post-transcriptional maturation of tRNAs includes various processing events including extensive decoration by various RNA modifications, which are required for correct tRNA folding and stability. Moreover, tRNA modifications determine the pattern and specificity of tRNA cleavage. The major drawbacks of many studies in the field of tRFs are that most of them used synthetic RNAs that closely mimic endogenous tRFs in their sequence, yet lack RNA modification that is found in vivo. Here, we developed a simple method to isolate tRNA-derived stress-induced RNAs (tiRNAs), a specific subset of tRFs. Our approach is scalable, cost-effective and relies on the purification of individual tiRNAs based on a sequence-specific RNA/DNA isolation technique using DNA probes. Our method facilitates functional studies of tiRNAs by addressing how physiological RNA modifications within tRNA fragments affect their biological activities. Here, we report pilot functional studies on selected endogenous tiRNAs, namely tiRNAAla and tiRNAGly. We show that natural 5'-tiRNAAla molecules assemble into G-quadruplex structures, and endogenous 5'-tiRNAGly possesses translation inhibition activity.


Subject(s)
Nucleic Acid Conformation , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Untranslated/chemistry , RNA, Untranslated/genetics , Stress, Physiological/genetics , Cell Line , Endoribonucleases , G-Quadruplexes , Humans , RNA Processing, Post-Transcriptional , RNA, Untranslated/isolation & purification , Structure-Activity Relationship
7.
J Neurochem ; 146(5): 560-569, 2018 09.
Article in English | MEDLINE | ID: mdl-29431851

ABSTRACT

Transfer RNA (tRNA) plays a role in stress response programs involved in various pathological conditions including neurological diseases. Under cell stress conditions, intracellular tRNA is cleaved by a specific ribonuclease, angiogenin, generating tRNA-derived fragments or tRNA-derived stress-induced RNA (tiRNA). Generated tiRNA contributes to the cell stress response and has potential cell protective effects. However, tiRNA generation under stress conditions in neuronal cells has not been fully elucidated. To examine angiogenin-mediated tiRNA generation in neuronal cells, we used the rat neuronal cell line, PC12, in combination with analysis of SYBR staining and immuno-northern blotting using anti-1-methyladenosine antibody, which specifically and sensitively detects tiRNA. Oxidative stress induced by arsenite and hydrogen peroxide caused tRNA cleavage and tiRNA generation in PC12 cells. We also demonstrated that oxygen-glucose deprivation, which is an in vitro model of ischemic-reperfusion injury, induced tRNA cleavage and tiRNA generation. In these stress conditions, the amount of generated tiRNA was associated with the degree of morphological cell damage. Time course analysis indicated that generation of tiRNA was prior to severe cell damage and cell death. Angiogenin over-expression did not influence the amount of tiRNA in normal culture conditions; however, it significantly increased tiRNA generation induced by cell stress conditions. Our findings show that angiogenin-mediated tiRNA generation can be induced in neuronal cells by different cell stressors, including ischemia-reperfusion. Additionally, detection of tiRNA could be used as a potential cell damage marker in neuronal cells. Cover Image for this issue: doi: 10.1111/jnc.14191.


Subject(s)
Gene Expression Regulation/physiology , Oxidative Stress/physiology , RNA Cleavage/physiology , RNA, Transfer/metabolism , Stress, Physiological/physiology , Animals , Arsenites/toxicity , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Survival , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Glucose/deficiency , Humans , Hydrogen Peroxide/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Oxygen , PC12 Cells/drug effects , Protein Biosynthesis/drug effects , RNA Cleavage/drug effects , Rats , Ribonuclease, Pancreatic/metabolism , Silver Staining , Time Factors
8.
Kidney Int ; 92(3): 634-645, 2017 09.
Article in English | MEDLINE | ID: mdl-28396122

ABSTRACT

Gut microbiota is involved in the metabolism of uremic solutes. However, the precise influence of microbiota to the retention of uremic solutes in CKD is obscure. To clarify this, we compared adenine-induced renal failure and control mice under germ-free or specific pathogen-free (SPF) conditions, examining the metabolite profiles of plasma, feces, and urine using a capillary electrophoresis time-of-flight mass spectrometry-based approach. Mice with renal failure under germ-free conditions demonstrated significant changes in plasma metabolites. Among 183 detected solutes, plasma levels of 11 solutes, including major uremic toxins, were significantly lower in germ-free mice than in SPF mice with renal failure. These 11 solutes were considered microbiota-derived uremic solutes and included indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, cholate, hippurate, dimethylglycine, γ-guanidinobutyrate, glutarate, 2-hydroxypentanoate, trimethylamine N-oxide, and phenaceturate. Metabolome profiling showed that these solutes were classified into three groups depending on their origins: completely derived from microbiota (indoxyl sulfate, p-cresyl sulfate), derived from both host and microbiota (dimethylglycine), and derived from both microbiota and dietary components (trimethylamine N-oxide). Additionally, germ-free renal failure conditions resulted in the disappearance of colonic short-chain fatty acids, decreased utilization of intestinal amino acids, and more severe renal damage compared with SPF mice with renal failure. Microbiota-derived short-chain fatty acids and efficient amino acid utilization may have a renoprotective effect, and loss of these factors may exacerbate renal damage in germ-free mice with renal failure. Thus, microbiota contributes substantially to the production of harmful uremic solutes, but conversely, growth without microbiota has harmful effects on CKD progression.


Subject(s)
Acute Kidney Injury/metabolism , Gastrointestinal Microbiome/physiology , Metabolome , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/blood , Uremia/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Adenine/toxicity , Animals , Disease Models, Animal , Disease Progression , Electrophoresis, Capillary , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Humans , Kidney/pathology , Mass Spectrometry , Metabolomics/methods , Mice , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/urine , Specific Pathogen-Free Organisms , Toxins, Biological/urine , Uremia/blood , Uremia/urine
9.
RNA Biol ; 14(2): 171-178, 2017 02.
Article in English | MEDLINE | ID: mdl-28010172

ABSTRACT

Angiogenin (ANG) is a secreted ribonuclease best known for its ability to promote formation of blood vessels. Extensive research over many years has elucidated its structure and biophysical properties, although our knowledge of molecular mechanisms underlying ANG-associated biologic processes remains limited. Intriguingly, many of processes require the ribonuclease activity of ANG, thus highlighting the importance of identifying and characterizing RNA targets and intermediates of ANG-mediated endonucleolytic cleavage. While ANG demonstrates ribonuclease activity toward many RNA substrates in vitro, specific target of ANG, namely mature tRNA, was only recently identified in vivo. ANG-mediated tRNA cleavage is an unorthodox manner of generating non-coding RNAs with diverse biologic activities. In addition, the ribonuclease activity of ANG has been reported to be crucial for rRNA transcription. Here we critically discuss various aspects of ANG biology related to its RNase activity and discuss areas in need of further investigation.


Subject(s)
RNA/genetics , RNA/metabolism , Ribonuclease, Pancreatic/metabolism , Adaptation, Biological , Animals , Disease Susceptibility , Enzyme Activation , Humans , Neovascularization, Physiologic/genetics , Protein Binding , RNA/chemistry , RNA Cleavage , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribonucleases/metabolism , Ribosomes/metabolism , Signal Transduction , Substrate Specificity
10.
J Am Soc Nephrol ; 27(7): 1925-32, 2016 07.
Article in English | MEDLINE | ID: mdl-26609120

ABSTRACT

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Subject(s)
Indoleacetic Acids/pharmacology , Kidney Tubules/cytology , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Smooth Muscle/drug effects , Phenylbutyrates/pharmacology , Animals , Male , Mice , Mice, Inbred C57BL
11.
J Am Soc Nephrol ; 26(8): 1787-94, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25525179

ABSTRACT

The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment.


Subject(s)
Alprostadil/analogs & derivatives , Chloride Channel Agonists/therapeutic use , Gastrointestinal Tract/drug effects , Kidney Failure, Chronic/prevention & control , Microbiota/drug effects , Adenine , Alprostadil/pharmacology , Alprostadil/therapeutic use , Animals , Chloride Channel Agonists/pharmacology , Disease Progression , Drug Evaluation, Preclinical , Gastrointestinal Tract/microbiology , Kidney Failure, Chronic/chemically induced , Lubiprostone , Male , Mice, Inbred C57BL , Random Allocation , Uremia/prevention & control
12.
J Am Soc Nephrol ; 26(2): 271-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25060058

ABSTRACT

A variety of genetic backgrounds cause the loss of function of thiazide-sensitive sodium chloride cotransporter, encoded by SLC12A3, responsible for the phenotypes in Gitelman syndrome. Recently, the phenomenon of exon skipping, in which exonic mutations result in abnormal splicing, has been associated with various diseases. Specifically, mutations in exonic splicing enhancer (ESE) sequences can promote exon skipping. Here, we used a bioinformatics program to analyze 88 missense mutations in the SLC12A3 gene and identify candidate mutations that may induce exon skipping. The three candidate mutations that reduced ESE scores the most were further investigated by minigene assay, and two (p.A356V and p.M672I) caused abnormal splicing in vitro. Furthermore, we identified the p.M672I (c.2016G>A) mutation in a patient with Gitelman syndrome and found that this single nucleotide mutation causes exclusion of exon 16 in the SLC12A3 mRNA transcript. Functional analyses revealed that the protein encoded by the aberrant SLC12A3 transcript does not transport sodium. These results suggest that aberrant exon skipping is one previously unrecognized mechanism by which missense mutations in SLC12A3 can lead to Gitelman syndrome.


Subject(s)
Exons , Gitelman Syndrome/genetics , Mutation, Missense , Transcription Termination, Genetic , Adult , Cell Line , Female , Gitelman Syndrome/physiopathology , Humans , Pedigree , Polymorphism, Single Nucleotide/genetics , RNA, Messenger/genetics , Sequence Analysis, DNA , Solute Carrier Family 12, Member 3/genetics
13.
Tohoku J Exp Med ; 236(3): 225-32, 2015 07.
Article in English | MEDLINE | ID: mdl-26118651

ABSTRACT

Mitochondria are key organelles implicated in a variety of processes related to energy and free radical generation, the regulation of apoptosis, and various signaling pathways. Mitochondrial dysfunction increases cellular oxidative stress and depletes ATP in a variety of inherited mitochondrial diseases and also in many other metabolic and neurodegenerative diseases. Mitochondrial diseases are characterized by the dysfunction of the mitochondrial respiratory chain, caused by mutations in the genes encoded by either nuclear DNA or mitochondrial DNA. We have hypothesized that chemicals that increase the cellular ATP levels may ameliorate the mitochondrial dysfunction seen in mitochondrial diseases. To search for the potential drugs for mitochondrial diseases, we screened an in-house chemical library of indole-3-acetic-acid analogs by measuring the cellular ATP levels in Hep3B human hepatocellular carcinoma cells. We have thus identified mitochonic acid 5 (MA-5), 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid, as a potential drug for enhancing ATP production. MA-5 is a newly synthesized derivative of the plant hormone, indole-3-acetic acid. Importantly, MA-5 improved the survival of fibroblasts established from patients with mitochondrial diseases under the stress-induced condition, including Leigh syndrome, MELAS (myopathy encephalopathy lactic acidosis and stroke-like episodes), Leber's hereditary optic neuropathy, and Kearns-Sayre syndrome. The improved survival was associated with the increased cellular ATP levels. Moreover, MA-5 increased the survival of mitochondrial disease fibroblasts even under the inhibition of the oxidative phosphorylation or the electron transport chain. These data suggest that MA-5 could be a therapeutic drug for mitochondrial diseases that exerts its effect in a manner different from anti-oxidant therapy.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Survival/drug effects , Drug Discovery , Fibroblasts/drug effects , Indoleacetic Acids/chemistry , Indoleacetic Acids/pharmacology , Mitochondrial Diseases/drug therapy , Phenylbutyrates/pharmacology , Analysis of Variance , Cell Line, Tumor , Cell Survival/physiology , Fibroblasts/physiology , Humans , Oxidative Phosphorylation , Phenylbutyrates/chemistry , Small Molecule Libraries
14.
J Am Soc Nephrol ; 25(10): 2316-26, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24833129

ABSTRACT

Tissue damage by oxidative stress is a key pathogenic mechanism in various diseases, including AKI and CKD. Thus, early detection of oxidative tissue damage is important. Using a tRNA-specific modified nucleoside 1-methyladenosine (m1A) antibody, we show that oxidative stress induces a direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation and occurs much earlier than DNA damage. In various models of tissue damage (ischemic reperfusion, toxic injury, and irradiation), the levels of circulating tRNA derivatives increased rapidly. In humans, the levels of circulating tRNA derivatives also increased under conditions of acute renal ischemia, even before levels of other known tissue damage markers increased. Notably, the level of circulating free m1A correlated with mortality in the general population (n=1033) over a mean follow-up of 6.7 years. Compared with healthy controls, patients with CKD had higher levels of circulating free m1A, which were reduced by treatment with pitavastatin (2 mg/d; n=29). Therefore, tRNA damage reflects early oxidative stress damage, and detection of tRNA damage may be a useful tool for identifying organ damage and forming a clinical prognosis.


Subject(s)
Oxidative Stress , RNA, Transfer/metabolism , Renal Insufficiency, Chronic/metabolism , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Adenosine/analogs & derivatives , Adenosine/immunology , Aged , Animals , Apoptosis , Case-Control Studies , DNA Damage , Female , Humans , Japan/epidemiology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Molecular Conformation , RNA, Transfer/chemistry , RNA, Transfer/immunology , Rats, Wistar , Renal Insufficiency, Chronic/mortality
15.
Antioxid Redox Signal ; 40(10-12): 715-735, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37767630

ABSTRACT

Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.


Subject(s)
Oxidative Stress , Proteins , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Proteins/metabolism , Protein Biosynthesis , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism
16.
Phytomedicine ; 124: 155260, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176264

ABSTRACT

BACKGROUND: Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN: Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE: The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS: Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT: JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION: JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Rats , Humans , Animals , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Diuresis , Biomarkers , China
17.
Wiley Interdiscip Rev RNA ; 14(6): e1805, 2023.
Article in English | MEDLINE | ID: mdl-37406666

ABSTRACT

Transfer RNA (tRNA)-derived RNAs (tDRs) are a class of small non-coding RNAs that play important roles in different aspects of gene expression. These ubiquitous and heterogenous RNAs, which vary across different species and cell types, are proposed to regulate various biological processes. In this review, we will discuss aspects of their biogenesis, and specifically, their contribution into translational control. We will summarize diverse roles of tDRs and the molecular mechanisms underlying their functions in the regulation of protein synthesis and their impact on related events such as stress-induced translational reprogramming. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Subject(s)
Riboswitch , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA Interference , RNA Processing, Post-Transcriptional
18.
Cancer Med ; 12(8): 9684-9696, 2023 04.
Article in English | MEDLINE | ID: mdl-36751113

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the most common malignancy in the world, and novel molecular targeted therapies for CRC have been vigorously pursued. We searched for novel combination therapies based on the expression patterns of membrane proteins in CRC cell lines. RESULTS: A positive correlation was observed between the expression of human pidermal growth factor receptor (HER) 3 and mesenchymal-to-epithelial transition factor (MET) on the cell surface of CRC cell lines. The brief stimulation of HER3/MET-high SW1116 CRC cells with both neuregulin-1 (NRG1) and hepatocyte growth factor enhanced ERK phosphorylation and cell proliferation more than each stimulation alone. In addition, a prolonged NRG1 stimulation resulted in the tyrosine phosphorylation of MET. In this context, the Forkhead Box protein M1 (FOXM1)-regulated tyrosine phosphorylation of MET by NRG1 was demonstrated, suggesting the existence of a signaling pathway mediated by FOXM1 upon the NRG1 stimulation. Since the co-expression of HER3 and MET was also demonstrated in in vivo CRC tissues by immunohistochemistry, we investigated whether the co-inhibition of HER3 and MET could be an effective therapy for CRC. We established HER3-and/or MET-KO SW1116 cell lines, and HER3/MET-double KO resulted in the inhibition of in vitro cell proliferation and in vivo tumor growth in nude mice by SW1116 cells. Furthermore, the combination of patritumab, an anti-HER3 fully human mAb, and PHA665752, a MET inhibitor, markedly inhibited in vitro cell proliferation, 3D-colony formation, and in vivo tumor growth in nude mice by SW1116 cells CONCLUSION: The dual targeting of HER3/MET has potential as CRC therapy.


Subject(s)
Colorectal Neoplasms , Humans , Animals , Mice , Mice, Nude , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Signal Transduction , Cell Proliferation , Tyrosine
19.
J Am Soc Nephrol ; 22(4): 635-48, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21372211

ABSTRACT

A highly acidic environment surrounds proximal tubular cells as a result of their reabsorption of HCO(3)(-). It is unclear whether this luminal acidity affects proteinuria-induced progression of tubular cell damage. Here, we investigated the contribution of luminal acidity to superoxide (O(2)(·-)) production induced by oleic acid-bound albumin (OA-Alb) in proximal tubular cells. Acidic media significantly enhanced OA-Alb-induced O(2)(·-) production in the HK-2 proximal tubular cell line. Simultaneous treatment with both OA-Alb and acidic media led to phosphorylation of the intracellular pH sensor Pyk2. Highly phosphorylated Pyk2 associated with activation of Rac1, an essential subcomponent of NAD(P)H oxidase. Furthermore, knockdown of Pyk2 with siRNA attenuated the O(2)(·-) production induced by cotreatment with OA-Alb and acid. To assess whether luminal alkalinization abrogates proteinuria-induced tubular damage, we studied a mouse model of protein-overload nephropathy. NaHCO(3) feeding selectively alkalinized the urine and dramatically attenuated the accumulation of O(2)(·-)-induced DNA damage and proximal tubular injury. Overall, these observations suggest that luminal acidity aggravates proteinuria-induced tubular damage and that modulation of this acidic environment may hold potential as a therapeutic target for proteinuric kidney disease.


Subject(s)
Kidney Diseases/etiology , Kidney Diseases/physiopathology , Kidney Tubules, Proximal/physiopathology , Oxidative Stress/physiology , Proteinuria/complications , Proteinuria/prevention & control , Sodium Bicarbonate/therapeutic use , Albumins/pharmacology , Animals , Apoptosis/drug effects , Cell Line , DNA Damage/drug effects , Disease Models, Animal , Disease Progression , Female , Focal Adhesion Kinase 2/metabolism , Humans , Hydrogen-Ion Concentration , Kidney Diseases/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Male , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Oleic Acid/pharmacology , Oxidative Stress/drug effects , Oxygen/metabolism , Proteinuria/metabolism , Reactive Oxygen Species/metabolism , Sodium Bicarbonate/pharmacology
20.
Front Mol Biosci ; 9: 791094, 2022.
Article in English | MEDLINE | ID: mdl-35300117

ABSTRACT

Stress-induced tRNA cleavage has been implicated in various cellular processes, where tRNA fragments play diverse regulatory roles. Angiogenin (ANG), a member of the RNase A superfamily, induces cleavage of tRNAs resulting in the formation of tRNA-derived stress-induced RNAs (tiRNAs) that contribute to translational reprogramming aiming at cell survival. In addition to cleaving tRNA anticodon loops, ANG has been shown to cleave 3'-CCA termini of tRNAs in vitro, although it is not known whether this process occurs in cells. It has also been suggested that tiRNAs can be generated independently of ANG, although the role of other stress-induced RNases in tRNA cleavage is poorly understood. Using gene editing and biochemical approaches, we examined the involvement of ANG in stress-induced tRNA cleavage by focusing on its cleavage of CCA-termini as well as anticodon loops. We show that ANG is not responsible for CCA-deactivation under sodium arsenite (SA) treatment in cellulo, and although ANG treatment significantly increases 3'-tiRNA levels in cells, the majority of 3'-tiRNAs retain their 3'-CCA termini. Instead, other RNases can cleave CCA-termini in cells, although with low efficiency. Moreover, in the absence of ANG, other RNases are able to promote the production of tiRNAs in cells. Depletion of RNH1 (an endogenous inhibitor of RNase A superfamily) promotes constitutively-produced tiRNAs and CCA-deactivated tRNAs in cells. Interestingly, SA treatment in RNH1-depleted cells did not increase the amount of tiRNAs or CCA-deactivated tRNAs, suggesting that RNase A superfamily enzymes are largely responsible for SA-induced tRNA cleavage. We show that interplay between stress-induced RNases cause targeting tRNAs in a stress-specific manner in cellulo.

SELECTION OF CITATIONS
SEARCH DETAIL