Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bull Exp Biol Med ; 171(1): 172-177, 2021 May.
Article in English | MEDLINE | ID: mdl-34046794

ABSTRACT

We studied the effect of porous composite scaffolds based on poly(3-hydroxybutyrate) (PHB) loaded with simvastatin on the growth and differentiation of mesenchymal stem cells. The scaffolds have a suitable microstructure (porosity and pore size) and physicochemical properties to support the growth of mesenchymal stem cells. Scaffold loading with simvastatin suppressed cell growth and increased alkaline phosphatase activity, which can attest to their osteoinductive properties.


Subject(s)
Mesenchymal Stem Cells , Tissue Scaffolds , 3-Hydroxybutyric Acid/pharmacology , Cell Differentiation , Hydroxybutyrates , Osteogenesis , Polyesters , Porosity , Simvastatin/pharmacology , Tissue Engineering , Tissue Scaffolds/chemistry
2.
Prep Biochem Biotechnol ; 47(2): 173-184, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-27215309

ABSTRACT

A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB-DEG, PHB-TEG, PHB-PEG, and PHB-HV-PEG copolymers using short-chain PEGs (with n ≤ 9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB-HV-PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.


Subject(s)
Azotobacter/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Chromatography, Gel , Hydroxybutyrates/chemistry , Molecular Weight , Polyesters/chemistry , Proton Magnetic Resonance Spectroscopy
3.
Acta Naturae ; 8(3): 77-87, 2016.
Article in English | MEDLINE | ID: mdl-27795846

ABSTRACT

Production of novel polyhydroxyalkanoates (PHAs), biodegradable polymers for biomedical applications, and biomaterials based on them is a promising trend in modern bioengineering. We studied the ability of an effective strain-producer Azotobacter chroococcum 7B to synthesize not only poly(3-hydroxybutyrate) homopolymer (PHB) and its main copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), but also a novel copolymer, poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB4MV). For the biosynthesis of PHB copolymers, we used carboxylic acids as additional carbon sources and monomer precursors in the chain of synthesized copolymers. The main parameters of these polymers' biosynthesis were determined: strain-producer biomass yield, polymer yield, molecular weight and monomer composition of the synthesized polymers, as well as the morphology of A. chroococcum 7B bacterial cells. The physico-chemical properties of the polymers were studied using nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), contact angle test, and other methods. In vitro biocompatibility of the obtained polymers was investigated using stromal cells isolated from the bone marrow of rats with the XTT cell viability test. The synthesis of the novel copolymer PHB4MV and its chemical composition were demonstrated by NMR spectroscopy: the addition of 4-methylvaleric acid to the culture medium resulted in incorporation of 3-hydroxy-4-methylvalerate (3H4MV) monomers into the PHB polymer chain (0.6 mol%). Despite the low molar content of 3H4MV in the obtained copolymer, its physico-chemical properties were significantly different from those of the PHB homopolymer: it has lower crystallinity and a higher contact angle, i.e. the physico-chemical properties of the PHB4MV copolymer containing only 0.6 mol% of 3H4MV corresponded to a PHBV copolymer with a molar content ranging from 2.5% to 7.8%. In vitro biocompatibility of the obtained PHB4MV copolymer, measured in the XTT test, was not statistically different from the cell growth of PHB and PHBV polymers, which make its use possible in biomedical research and development.

SELECTION OF CITATIONS
SEARCH DETAIL