Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21683433

ABSTRACT

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Subject(s)
Amino Acids/pharmacology , Biphenyl Compounds/pharmacology , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Allosteric Site , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , DNA Mutational Analysis , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/genetics
2.
Cell ; 136(3): 420-34, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203578

ABSTRACT

The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome.


Subject(s)
DNA Damage , Immunologic Deficiency Syndromes/metabolism , Signal Transduction , Ubiquitin/metabolism , Cell Line , Histones/metabolism , Humans , Immunologic Deficiency Syndromes/genetics , Radiation Tolerance , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Mol Cell ; 61(3): 405-418, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26774285

ABSTRACT

DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.


Subject(s)
DNA End-Joining Repair , DNA Helicases/metabolism , Mammary Neoplasms, Experimental/enzymology , Animals , BRCA1 Protein/genetics , DNA Helicases/deficiency , DNA Helicases/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Feedback, Physiological , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , RNA Interference , RecQ Helicases/genetics , RecQ Helicases/metabolism , S Phase , Time Factors , Transfection , Tumor Suppressor Proteins/genetics
4.
Mol Cell ; 40(4): 619-31, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21055983

ABSTRACT

Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.


Subject(s)
DNA Replication , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Recombination, Genetic , Stress, Physiological , Cell Survival , DNA Breaks, Double-Stranded , HeLa Cells , Humans , NF-kappa B/chemistry , Protein Binding , S Phase , Templates, Genetic
5.
Nat Methods ; 10(8): 730-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23921808

ABSTRACT

Affinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited. Fortunately, negative controls are largely bait independent. Hence, aggregating negative controls from multiple AP-MS studies can increase coverage and improve the characterization of background associated with a given experimental protocol. Here we present the contaminant repository for affinity purification (the CRAPome) and describe its use for scoring protein-protein interactions. The repository (currently available for Homo sapiens and Saccharomyces cerevisiae) and computational tools are freely accessible at http://www.crapome.org/.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Proteins/analysis , Proteomics/methods , Databases, Factual , Humans
6.
Nature ; 466(7309): 941-6, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20725033

ABSTRACT

DNA double-strand breaks (DSBs) pose a potent threat to genome integrity. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DSBs elicit a signalling cascade that modifies the chromatin surrounding the break, first by ATM-dependent phosphorylation and then by RNF8-, RNF168- and BRCA1-dependent regulatory ubiquitination. Here we report that OTUB1, a deubiquitinating enzyme, is an inhibitor of DSB-induced chromatin ubiquitination. Surprisingly, we found that OTUB1 suppresses RNF168-dependent poly-ubiquitination independently of its catalytic activity. OTUB1 does so by binding to and inhibiting UBC13 (also known as UBE2N), the cognate E2 enzyme for RNF168. This unusual mode of regulation is unlikely to be limited to UBC13 because analysis of OTUB1-associated proteins revealed that OTUB1 binds to E2s of the UBE2D and UBE2E subfamilies. Finally, OTUB1 depletion mitigates the DSB repair defect associated with defective ATM signalling, indicating that pharmacological targeting of the OTUB1-UBC13 interaction might enhance the DNA damage response.


Subject(s)
Chromatin/metabolism , Cysteine Endopeptidases/metabolism , DNA Breaks, Double-Stranded , Ubiquitination/physiology , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Chromatin/chemistry , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/genetics , DNA Repair/physiology , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Deubiquitinating Enzymes , Humans , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Mol Cell Proteomics ; 11(6): M111.014233, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22261722

ABSTRACT

Centrosomes are composed of a centriole pair surrounded by an intricate proteinaceous matrix referred to as pericentriolar material. Although the mechanisms underpinning the control of centriole duplication are now well understood, we know relatively little about the control of centrosome size and shape. Here we used interaction proteomics to identify the E3 ligase HERC2 and the neuralized homologue NEURL4 as novel interaction partners of the centrosomal protein CP110. Using high resolution imaging, we find that HERC2 and NEURL4 localize to the centrosome and that interfering with their function alters centrosome morphology through the appearance of aberrant filamentous structures that stain for a subset of pericentriolar material proteins including pericentrin and CEP135. Using an RNA interference-resistant transgene approach in combination with structure-function analyses, we show that the association between CP110 and HERC2 depends on nonoverlapping regions of NEURL4. Whereas CP110 binding to NEURL4 is dispensable for the regulation of pericentriolar material architecture, its association with HERC2 is required to maintain normal centrosome integrity. NEURL4 is a substrate of HERC2, and together these results indicate that the NEURL4-HERC2 complex participates in the ubiquitin-dependent regulation of centrosome architecture.


Subject(s)
Carrier Proteins/metabolism , Centrosome/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Carrier Proteins/genetics , Carrier Proteins/isolation & purification , Cell Cycle Proteins/metabolism , Chromatography, Affinity , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/isolation & purification , HEK293 Cells , Humans , Microtubule-Associated Proteins/isolation & purification , Microtubule-Associated Proteins/metabolism , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Transport , Proteomics , RNA Interference , Ubiquitin-Protein Ligases , Ubiquitination
8.
Biochem J ; 411(2): 249-60, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18254724

ABSTRACT

AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys(29) and/or Lys(33) rather than the more common Lys(48)/Lys(63). We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.


Subject(s)
Polyubiquitin/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Cell Line , Enzyme Activation , Humans , Lysine/genetics , Lysine/metabolism , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Ubiquitin Thiolesterase/genetics
9.
Mol Cell Endocrinol ; 214(1-2): 155-65, 2004 Feb 12.
Article in English | MEDLINE | ID: mdl-15062554

ABSTRACT

Four mutant clones independently derived from the Y1 mouse adrenocortical tumor cell line have adenylyl cyclase (AC) activities that are resistant to forskolin, a direct activator of AC. In this study the AC isoform composition of the forskolin-resistant mutants was examined in order to explore the underlying basis for the resistance to forskolin. As determined by Western blot and RT-PCR analysis, the four forskolin-resistant mutants all were deficient in AC-4; the levels of other AC isoforms (AC-1, AC-3 and AC-5/6) were comparable to the levels in parent Y1 cells. Transfection of one of the mutant clones with an AC-4 expression vector increased forskolin-stimulated cAMP signaling, and restored forskolin-induced changes in cell morphology and growth. Taken together, these observations indicate that AC-4 deficiency is a hallmark of the forskolin-resistant phenotype of these mutants and suggest that AC-4 is an important target of forskolin action in the Y1 adrenal cell line.


Subject(s)
Adenylyl Cyclases/deficiency , Adrenal Cortex Neoplasms/pathology , Colforsin/pharmacology , Drug Resistance , Adenylyl Cyclases/analysis , Adenylyl Cyclases/physiology , Adrenal Cortex Neoplasms/genetics , Animals , Cell Division , Cell Line, Tumor , Cell Size , Cyclic AMP/biosynthesis , Dose-Response Relationship, Drug , Mice , Mutation , Protein Isoforms/analysis , RNA, Messenger/analysis
10.
Mol Cell Endocrinol ; 215(1-2): 101-8, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-15026181

ABSTRACT

Forskolin-resistant mutants of a mouse adrenocortical cell line present a complex phenotype in which adenylyl cyclase (AC) is resistant to activation by forskolin and by ACTH. ACTH-resistance results from a defect affecting transcription of the ACTH receptor and can be overcome by transfecting mutant cells with expression vectors encoding G beta/gamma. Forskolin-resistance results from an AC-4 deficiency. We now demonstrate that the AC-4 deficiency in forskolin-resistant mutants results from a transcription defect affecting the promoter activity of the AC-4 gene. Furthermore, the underlying defect leading to AC-4 deficiency and forskolin-resistance can be overcome by transfection of mutant clones with expression vectors encoding G beta/gamma. These data support our hypothesis that AC-4 is a preferred target of forskolin action in Y1 cells, demonstrate novel roles for G beta/gamma in gene expression and indicate that a common underlying defect, suppressible by G beta/gamma, accounts for both the resistance to ACTH and to forskolin.


Subject(s)
Adenylyl Cyclases/physiology , Adrenal Cortex Neoplasms/pathology , Colforsin/pharmacology , Drug Resistance , GTP-Binding Protein alpha Subunits, Gs/metabolism , Mutation , Promoter Regions, Genetic/genetics , Adenylyl Cyclases/genetics , Adrenal Cortex Neoplasms/genetics , Adrenocorticotropic Hormone/pharmacology , Animals , Cyclic AMP/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Corticotropin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
DNA Repair (Amst) ; 9(12): 1229-40, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21056014

ABSTRACT

Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , Fanconi Anemia Complementation Group Proteins/metabolism , Genes, cdc/physiology , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Signal Transduction/genetics
12.
J Cell Sci ; 118(Pt 23): 5661-73, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16306228

ABSTRACT

The LKB1 tumour suppressor kinase phosphorylates and activates a number of protein kinases belonging to the AMP-activated protein kinase (AMPK) subfamily. We have used a modified tandem affinity purification strategy to identify proteins that interact with AMPKalpha, as well as the twelve AMPK-related kinases that are activated by LKB1. The AMPKbeta and AMPKgamma regulatory subunits were associated with AMPKalpha, but not with any of the AMPK-related kinases, explaining why AMP does not influence the activity of these enzymes. In addition, we identified novel binding partners that interacted with one or more of the AMPK subfamily enzymes, including fat facets/ubiquitin specific protease-9 (USP9), AAA-ATPase-p97, adenine nucleotide translocase, protein phosphatase 2A holoenzyme and isoforms of the phospho-protein binding adaptor 14-3-3. Interestingly, the 14-3-3 isoforms bound directly to the T-loop Thr residue of QSK and SIK, after these were phosphorylated by LKB1. Consistent with this, the 14-3-3 isoforms failed to interact with non-phosphorylated QSK and SIK, in LKB1 knockout muscle or in HeLa cells in which LKB1 is not expressed. Moreover, mutation of the T-loop Thr phosphorylated by LKB1, prevented QSK and SIK from interacting with 14-3-3 in vitro. Binding of 14-3-3 to QSK and SIK, enhanced catalytic activity towards the TORC2 protein and the AMARA peptide, and was required for the cytoplasmic localization of SIK and for localization of QSK to punctate structures within the cytoplasm. To our knowledge, this study provides the first example of 14-3-3 binding directly to the T-loop of a protein kinase and influencing its catalytic activity and cellular localization.


Subject(s)
14-3-3 Proteins/metabolism , Multienzyme Complexes/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , HeLa Cells , Humans , Mice , Molecular Sequence Data , Protein Binding , Protein Isoforms/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL