Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(D1): D1212-D1219, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36624665

ABSTRACT

canSAR (https://cansar.ai) is the largest public cancer drug discovery and translational research knowledgebase. Now hosted in its new home at MD Anderson Cancer Center, canSAR integrates billions of experimental measurements from across molecular profiling, pharmacology, chemistry, structural and systems biology. Moreover, canSAR applies a unique suite of machine learning algorithms designed to inform drug discovery. Here, we describe the latest updates to the knowledgebase, including a focus on significant novel data. These include canSAR's ligandability assessment of AlphaFold; mapping of fragment-based screening data; and new chemical bioactivity data for novel targets. We also describe enhancements to the data and interface.


Subject(s)
Antineoplastic Agents , Drug Discovery , Knowledge Bases , Translational Research, Biomedical , Humans , Algorithms , Neoplasms/drug therapy , Neoplasms/genetics
2.
Nucleic Acids Res ; 51(D1): D1492-D1502, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36268860

ABSTRACT

We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development.


Subject(s)
Molecular Probes , Proteins , Drug Discovery , Proteins/chemistry , Proteins/metabolism , Databases, Chemical
3.
Nucleic Acids Res ; 49(D1): D1074-D1082, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33219674

ABSTRACT

canSAR (http://cansar.icr.ac.uk) is the largest, public, freely available, integrative translational research and drug discovery knowledgebase for oncology. canSAR integrates vast multidisciplinary data from across genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and more. It also provides unique data, curation and annotation and crucially, AI-informed target assessment for drug discovery. canSAR is widely used internationally by academia and industry. Here we describe significant developments and enhancements to the data, web interface and infrastructure of canSAR in the form of the new implementation of the system: canSARblack. We demonstrate new functionality in aiding translation hypothesis generation and experimental design, and show how canSAR can be adapted and utilised outside oncology.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drug Discovery/methods , Knowledge Bases , Neoplasms/genetics , Translational Research, Biomedical/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Data Mining/methods , Genomics/methods , Humans , Internet , Medical Oncology/methods , Molecular Structure , Neoplasms/metabolism , Proteomics/methods , User-Computer Interface
4.
Nucleic Acids Res ; 47(D1): D917-D922, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30496479

ABSTRACT

canSAR (http://cansar.icr.ac.uk) is a public, freely available, integrative translational research and drug discovery knowlegebase. canSAR informs researchers to help solve key bottlenecks in cancer translation and drug discovery. It integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and unique, comprehensive and orthogonal 'druggability' assessments. canSAR is widely used internationally by academia and industry. Here we describe major enhancements to canSAR including new and expanded data. We also describe the first components of canSARblack-an advanced, responsive, multi-device compatible redesign of canSAR with a question-led interface.


Subject(s)
Antineoplastic Agents , Databases, Pharmaceutical , Drug Discovery , Knowledge Bases , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein Conformation , Protein Interaction Mapping , Translational Research, Biomedical , User-Computer Interface
6.
Nucleic Acids Res ; 44(D1): D938-43, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26673713

ABSTRACT

canSAR (http://cansar.icr.ac.uk) is a publicly available, multidisciplinary, cancer-focused knowledgebase developed to support cancer translational research and drug discovery. canSAR integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and druggability data. canSAR is widely used to rapidly access information and help interpret experimental data in a translational and drug discovery context. Here we describe major enhancements to canSAR including new data, improved search and browsing capabilities, new disease and cancer cell line summaries and new and enhanced batch analysis tools.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Knowledge Bases , Neoplasms/metabolism , Animals , Cell Line, Tumor , Clinical Trials as Topic , Gene Expression , Humans , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics
7.
PLoS Comput Biol ; 11(12): e1004597, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26699810

ABSTRACT

The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/.


Subject(s)
Antineoplastic Agents/administration & dosage , Models, Biological , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Interaction Mapping/methods , Algorithms , Computer Simulation , Drug Delivery Systems/methods , Drug Discovery/methods , Drug Therapy, Computer-Assisted/methods , Humans , Molecular Targeted Therapy/methods , Neoplasm Proteins/antagonists & inhibitors , Signal Transduction/drug effects
8.
Nucleic Acids Res ; 42(Database issue): D1040-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24304894

ABSTRACT

canSAR (http://cansar.icr.ac.uk) is a public integrative cancer-focused knowledgebase for the support of cancer translational research and drug discovery. Through the integration of biological, pharmacological, chemical, structural biology and protein network data, it provides a single information portal to answer complex multidisciplinary questions including--among many others--what is known about a protein, in which cancers is it expressed or mutated, and what chemical tools and cell line models can be used to experimentally probe its activity? What is known about a drug, its cellular sensitivity profile and what proteins is it known to bind that may explain unusual bioactivity? Here we describe major enhancements to canSAR including new data, improved search and browsing capabilities and new target, cancer cell line, protein family and 3D structure summaries and tools.


Subject(s)
Antineoplastic Agents/chemistry , Databases, Genetic , Drug Discovery , Neoplasms/genetics , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Internet , Knowledge Bases , Mutation , Protein Conformation , Protein Interaction Mapping , Proteins/classification , Proteins/genetics , Proteins/metabolism , Translational Research, Biomedical
9.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Article in English | MEDLINE | ID: mdl-19606141

ABSTRACT

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Subject(s)
Genome, Helminth/genetics , Schistosoma mansoni/genetics , Animals , Biological Evolution , Exons/genetics , Genes, Helminth/genetics , Host-Parasite Interactions/genetics , Introns/genetics , Molecular Sequence Data , Physical Chromosome Mapping , Schistosoma mansoni/drug effects , Schistosoma mansoni/embryology , Schistosoma mansoni/physiology , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology
10.
Nucleic Acids Res ; 40(Database issue): D947-56, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22013161

ABSTRACT

canSAR is a fully integrated cancer research and drug discovery resource developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface at http://cansar.icr.ac.uk provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.


Subject(s)
Antineoplastic Agents/chemistry , Databases, Genetic , Neoplasms/genetics , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Discovery , Gene Expression , Genetic Variation , Humans , Internet , Models, Molecular , Protein Interaction Maps , RNA Interference , Systems Integration , Translational Research, Biomedical
11.
Nucleic Acids Res ; 40(Database issue): D1100-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21948594

ABSTRACT

ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb.


Subject(s)
Databases, Factual , Drug Discovery , Databases, Protein , Humans , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Proteins/metabolism , User-Computer Interface
12.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38412481

ABSTRACT

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Signal Transduction , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Humans , Animals , Mice , Signal Transduction/drug effects , Receptors, Androgen/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects
13.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571421

ABSTRACT

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics
14.
Patterns (N Y) ; 4(8): 100777, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37602223

ABSTRACT

Survival models exist to study relationships between biomarkers and treatment effects. Deep learning-powered survival models supersede the classical Cox proportional hazards (CoxPH) model, but substantial performance drops were observed on high-dimensional features because of irrelevant/redundant information. To fill this gap, we proposed SwarmDeepSurv by integrating swarm intelligence algorithms with the deep survival model. Furthermore, four objective functions were designed to optimize prognostic prediction while regularizing selected feature numbers. When testing on multicenter sets (n = 1,058) of four different cancer types, SwarmDeepSurv was less prone to overfitting and achieved optimal patient risk stratification compared with popular survival modeling algorithms. Strikingly, SwarmDeepSurv selected different features compared with classical feature selection algorithms, including the least absolute shrinkage and selection operator (LASSO), with nearly no feature overlapping across these models. Taken together, SwarmDeepSurv offers an alternative approach to model relationships between radiomics features and survival endpoints, which can further extend to study other input data types including genomics.

15.
J Cheminform ; 14(1): 28, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643512

ABSTRACT

BACKGROUND: Integration of medicinal chemistry data from numerous public resources is an increasingly important part of academic drug discovery and translational research because it can bring a wealth of important knowledge related to compounds in one place. However, different data sources can report the same or related compounds in various forms (e.g., tautomers, racemates, etc.), thus highlighting the need of organising related compounds in hierarchies that alert the user on important bioactivity data that may be relevant. To generate these compound hierarchies, we have developed and implemented canSARchem, a new compound registration and standardization pipeline as part of the canSAR public knowledgebase. canSARchem builds on previously developed ChEMBL and PubChem pipelines and is developed using KNIME. We describe the pipeline which we make publicly available, and we provide examples on the strengths and limitations of the use of hierarchies for bioactivity data exploration. Finally, we identify canonicalization enrichment in FDA-approved drugs, illustrating the benefits of our approach. RESULTS: We created a chemical registration and standardization pipeline in KNIME and made it freely available to the research community. The pipeline consists of five steps to register the compounds and create the compounds' hierarchy: 1. Structure checker, 2. Standardization, 3. Generation of canonical tautomers and representative structures, 4. Salt strip, and 5. Generation of abstract structure to generate the compound hierarchy. Unlike ChEMBL's RDKit pipeline, we carry out compound canonicalization ahead of getting the parent structure, similar to PubChem's OpenEye pipeline. canSARchem has a lower rejection rate compared to both PubChem and ChEMBL. We use our pipeline to assess the impact of grouping the compounds in hierarchies for bioactivity data exploration. We find that FDA-approved drugs show statistically significant sensitivity to canonicalization compared to the majority of bioactive compounds which demonstrates the importance of this step. CONCLUSIONS: We use canSARchem to standardize all the compounds uploaded in canSAR (> 3 million) enabling efficient data integration and the rapid identification of alternative compound forms with useful bioactivity data. Comparison with PubChem and ChEMBL pipelines evidenced comparable performances in compound standardization, but only PubChem and canSAR canonicalize tautomers and canSAR has a slightly lower rejection rate. Our results highlight the importance of compound hierarchies for bioactivity data exploration. We make canSARchem available under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) at https://gitlab.icr.ac.uk/cansar-public/compound-registration-pipeline .

16.
Mol Cancer Ther ; 21(6): 1020-1029, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35368084

ABSTRACT

We hypothesize that the study of acute protein perturbation in signal transduction by targeted anticancer drugs can predict drug sensitivity of these agents used as single agents and rational combination therapy. We assayed dynamic changes in 52 phosphoproteins caused by an acute exposure (1 hour) to clinically relevant concentrations of seven targeted anticancer drugs in 35 non-small cell lung cancer (NSCLC) cell lines and 16 samples of NSCLC cells isolated from pleural effusions. We studied drug sensitivities across 35 cell lines and synergy of combinations of all drugs in six cell lines (252 combinations). We developed orthogonal machine-learning approaches to predict drug response and rational combination therapy. Our methods predicted the most and least sensitive quartiles of drug sensitivity with an AUC of 0.79 and 0.78, respectively, whereas predictions based on mutations in three genes commonly known to predict response to the drug studied, for example, EGFR, PIK3CA, and KRAS, did not predict sensitivity (AUC of 0.5 across all quartiles). The machine-learning predictions of combinations that were compared with experimentally generated data showed a bias to the highest quartile of Bliss synergy scores (P = 0.0243). We confirmed feasibility of running such assays on 16 patient samples of freshly isolated NSCLC cells from pleural effusions. We have provided proof of concept for novel methods of using acute ex vivo exposure of cancer cells to targeted anticancer drugs to predict response as single agents or combinations. These approaches could complement current approaches using gene mutations/amplifications/rearrangements as biomarkers and demonstrate the utility of proteomics data to inform treatment selection in the clinic.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pleural Effusion , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Artificial Intelligence , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation
17.
RSC Med Chem ; 13(1): 13-21, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35211674

ABSTRACT

Twenty years after the publication of the first draft of the human genome, our knowledge of the human proteome is still fragmented. The challenge of translating the wealth of new knowledge from genomics into new medicines is that proteins, and not genes, are the primary executers of biological function. Therefore, much of how biology works in health and disease must be understood through the lens of protein function. Accordingly, a subset of human proteins has been at the heart of research interests of scientists over the centuries, and we have accumulated varying degrees of knowledge about approximately 65% of the human proteome. Nevertheless, a large proportion of proteins in the human proteome (∼35%) remains uncharacterized, and less than 5% of the human proteome has been successfully targeted for drug discovery. This highlights the profound disconnect between our abilities to obtain genetic information and subsequent development of effective medicines. Target 2035 is an international federation of biomedical scientists from the public and private sectors, which aims to address this gap by developing and applying new technologies to create by year 2035 chemogenomic libraries, chemical probes, and/or biological probes for the entire human proteome.

18.
Biochem Soc Trans ; 39(5): 1365-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21936816

ABSTRACT

The challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure-activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery. The database contains the abstracted structures, properties and biological activities for over 700000 distinct compounds and in excess of more than 3 million bioactivity records abstracted from over 40000 publications. Additional public domain resources can be readily integrated into the same data model (e.g. PubChem BioAssay data). The compounds in ChEMBL are largely extracted from the primary medicinal chemistry literature, and are therefore usually 'drug-like' or 'lead-like' small molecules with full experimental context. The data cover a significant fraction of the discovery of modern drugs, and are useful in a wide range of drug design and discovery tasks. In addition to the compound data, ChEMBL also contains information for over 8000 protein, cell line and whole-organism 'targets', with over 4000 of those being proteins linked to their underlying genes. The database is searchable both chemically, using an interactive compound sketch tool, protein sequences, family hierarchies, SMILES strings, compound research codes and key words, and biologically, using a variety of gene identifiers, protein sequence similarity and protein families. The information retrieved can then be readily filtered and downloaded into various formats. ChEMBL can be accessed online at https://www.ebi.ac.uk/chembldb.


Subject(s)
Data Mining , Databases, Factual , Drug Discovery , Animals , Computational Biology/methods , Genomics , Humans , Information Storage and Retrieval , Molecular Structure , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Proteins/chemistry , Structure-Activity Relationship
19.
Future Med Chem ; 13(8): 731-747, 2021 04.
Article in English | MEDLINE | ID: mdl-31778323

ABSTRACT

High-quality small molecule chemical probes are extremely valuable for biological research and target validation. However, frequent use of flawed small-molecule inhibitors produces misleading results and diminishes the robustness of biomedical research. Several public resources are available to facilitate assessment and selection of better chemical probes for specific protein targets. Here, we review chemical probe resources, discuss their current strengths and limitations, and make recommendations for further improvements. Expert review resources provide in-depth analysis but currently cover only a limited portion of the liganded proteome. Computational resources encompass more proteins and are regularly updated, but have limitations in data availability and curation. We show how biomedical scientists may use these resources to choose the best available chemical probes for their research.


Subject(s)
Enzyme Inhibitors/chemistry , Molecular Probes/chemistry , Proteins/metabolism , Small Molecule Libraries/chemistry , Algorithms , Animals , Computer Simulation , Databases, Chemical , Enzyme Inhibitors/pharmacology , Humans , Molecular Probes/pharmacology , Proteome/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
20.
Cell Chem Biol ; 28(10): 1433-1445.e3, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34077750

ABSTRACT

Most small molecules interact with several target proteins but this polypharmacology is seldom comprehensively investigated or explicitly exploited during drug discovery. Here, we use computational and experimental methods to identify and systematically characterize the kinase cross-pharmacology of representative HSP90 inhibitors. We demonstrate that the resorcinol clinical candidates ganetespib and, to a lesser extent, luminespib, display unique off-target kinase pharmacology as compared with other HSP90 inhibitors. We also demonstrate that polypharmacology evolved during the optimization to discover luminespib and that the hit, leads, and clinical candidate all have different polypharmacological profiles. We therefore recommend the computational and experimental characterization of polypharmacology earlier in drug discovery projects to unlock new multi-target drug design opportunities.


Subject(s)
Drug Discovery , Evolution, Molecular , HSP90 Heat-Shock Proteins/metabolism , Protein Kinase Inhibitors/metabolism , Binding Sites , Discoidin Domain Receptor 1/antagonists & inhibitors , Discoidin Domain Receptor 1/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Isoxazoles/chemistry , Isoxazoles/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/metabolism , Resorcinols/chemistry , Resorcinols/metabolism , Triazoles/chemistry , Triazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL